Skip to main content
Log in

Temporal dynamics of primary motor cortex gamma oscillation amplitude and piper corticomuscular coherence changes during motor control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In recent years, the use of non-invasive techniques (EEG/MEG) to measure the ~80 Hz (“gamma”) oscillations generated by the primary motor cortex during motor control has been well validated. However, primary motor cortex gamma oscillations have yet to be systematically compared with lower frequency (30–50 Hz, ‘piper’) corticomuscular coherence in the same tasks. In this paper, primary cortex gamma oscillations and piper corticomuscular coherence are compared for three types of movements: simple abductions of the index finger, repetitive abductions of the index finger of different extents and frequencies and static abduction of the index finger at two different force levels. For simple movements, piper coherence and gamma amplitude followed very similar time courses with coherence appearing at approximately half the frequency of cortical gamma oscillations. No evidence of 2:1 phase–phase coupling was observed. A similar pattern of results was observed for repetitive movements varying in size and frequency; however, during the production of static force, the time courses became dissociated. During these movements, EMG piper amplitude was sustained for the entire contraction; gamma power showed a burst at onset but no piper corticomuscular coherence was observed. For these data, this dissociation suggests that while primary motor cortex gamma oscillations and piper corticomuscular coherence may often co-occur during the production of dynamic movements, they probably reflect different functional processes in motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrykiewicz A, Patino L, Naranjo JR, Witte M, Hepp-Reymond MC, Kristeva R (2007) Corticomuscular synchronization with small and large dynamic force output. BMC Neurosci 8

  • Baker MR, Baker SN (2003) The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol 546:931–942

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Chiu M, Fetz EE (2006) Afferent encoding of central oscillations in the monkey arm. J Neurophysiol 95:3904–3910

    Article  PubMed  Google Scholar 

  • Ball T, Demandt E, Mutschler I, Neitzel E, Mehring C, Vogt K, Aertsen A, Schulze-Bonhage A (2008) Movement related activity in the high gamma range of the human EEG. Neuroimage 41:302–310

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the False Discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Brown P, Salenius S, Rothwell JC, Hari R (1998) Cortical correlate of the Piper rhythm in humans. J Neurophysiol 80:2911–2917

    PubMed  CAS  Google Scholar 

  • Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC (2008) Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage 42:332–342

    Article  PubMed  Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt 12):2301–2315

    Article  PubMed  Google Scholar 

  • Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB (2009) High gamma mapping using EEG. Neuroimage 49:930–938

    Article  PubMed  Google Scholar 

  • Gaetz WC, MacDonald M, Cheyne D, Snead OC (2010) Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. NeuroImage (in press)

  • Hagbarth KE, Jessop J, Eklund G, Wallin EU (1983) The Piper rhythm—a phenomenon related to muscle resonance characteristics? Acta Physiol Scand 117:263–271

    Article  PubMed  CAS  Google Scholar 

  • Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded effect of stimulus contrast. J Neurophysiol 94:479–490

    Article  PubMed  Google Scholar 

  • Hurtado JM, Rubchinsky LL, Sigvardt KA (2004) Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 91:1883–1898

    Article  PubMed  Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  PubMed  CAS  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  PubMed  CAS  Google Scholar 

  • Langdon AJ, Boonstra TW, Breakspear M (2011) Multi-frequency phase locking in human somatosensory cortex. Prog Biophys Mol Biol (in press)

  • Le Van Quyen M, Foucher J, Lachaux JP, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111:83–98

    Article  PubMed  CAS  Google Scholar 

  • Marsden JF, Werhahn KJ, Ashby P, Rothwell J, Noachtar S, Brown P (2000) Organization of cortical activities related to movement in humans. J Neurosci 20:2307–2314

    PubMed  CAS  Google Scholar 

  • Marshall SP, Lang EJ (2004) Inferior olive oscillations gate transmission of motor cortical activity to the cerebellum. J Neurosci 24:11356–11367

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller JW, Ojemann JG (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci 27:2424–2432

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, Zanos S, Fetz EE, den Nijs M, Ojemann JG (2009) Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J Neurosci 29:3132–3137

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Hallett M (1999) Corticomuscular coherence: a review. J Clin Neurophysiol 16:501–511

    Article  PubMed  CAS  Google Scholar 

  • Muthukumaraswamy SD (2010) Functional properties of human primary motor cortex gamma oscillations. J Neurophysiol 104:2873–2885

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Singh KD (in press) A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power. Clin Neurophysiol

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  • Omlor W, Patino L, Hepp-Reymond MC, Kristeva R (2007) Gamma-range corticomuscular coherence during dynamic force output. Neuroimage 34:1191–1198

    Article  PubMed  Google Scholar 

  • Patino L, Omlor W, Chakarov V, Hepp-Reymond MC, Kristeva R (2008) Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient. J Neurophysiol 99:1906–1916

    Article  PubMed  Google Scholar 

  • Penny W, Holmes AP (2004) Random effects analysis. In: Human brain function. Elsevier, San Diego, pp 843–850

  • Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol 114:1226–1236

    Article  PubMed  CAS  Google Scholar 

  • Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. Neuroreport 14:321–324

    Article  PubMed  Google Scholar 

  • Robinson SE, Vrba J (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N (eds) Recent advances in biomagnetism. Tohoku University Press, Sendai, pp 302–305

    Google Scholar 

  • Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113

    Article  PubMed  CAS  Google Scholar 

  • Szurhaj W, Bourriez JL, Kahane P, Chauvel P, Mauguiere F, Derambure P (2005) Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex. Eur J Neurosci 21:1223–1235

    Article  PubMed  Google Scholar 

  • Szurhaj W, Labyt E, Bourriez JL, Kahane P, Chauvel P, Mauguiere F, Derambure P (2006) Relationship between intracerebral gamma oscillations and slow potentials in the human sensorimotor cortex. Eur J Neurosci 24:947–954

    Article  PubMed  Google Scholar 

  • Tass P, Rosenblum RG, Weule J, Kurths J, Pikovsky W, Volkmann J, SCnitzler A, Freund H-J (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294

    Article  CAS  Google Scholar 

  • Tass PA, Fieseler T, Dammers J, Dolan K, Morosan P, Majtanik M, Boers F, Muren A, Zilles K, Fink GR (2003) Synchronization tomography: a method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography. Phys Rev Lett 90

  • Tecchio F, Zappasodi F, Porcaro C, Barbati G, Assenza G, Salustri C, Rossini PM (2008) High-gamma band activity of primary hand cortical areas: a sensorimotor feedback efficiency index. Neuroimage 40:256–264

    Article  PubMed  Google Scholar 

  • Vrba J, Robinson SE (2001) Signal processing in magnetoencephalography. Methods 25:249–271

    Article  PubMed  CAS  Google Scholar 

  • Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C (2008) Hand movement direction decoded from MEG and EEG. J Neurosci 28:1000–1008

    Article  PubMed  CAS  Google Scholar 

  • Whitham EM, Lewis T, Pope KJ, Fitzgibbon SP, Clark CR, Loveless S, DeLosAngeles D, Wallace AK, Broberg M, Willoughby JO (2008) Thinking activates EMG in scalp electrical recordings. Clin Neurophysiol 119:1166–1175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh D. Muthukumaraswamy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthukumaraswamy, S.D. Temporal dynamics of primary motor cortex gamma oscillation amplitude and piper corticomuscular coherence changes during motor control. Exp Brain Res 212, 623–633 (2011). https://doi.org/10.1007/s00221-011-2775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2775-z

Keywords

Navigation