Skip to main content
Log in

Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The uncertainties of stable isotope results depend not only on the technical aspects of measurements, but also on how raw data are normalized to one of the international isotope scales. The inconsistency in the normalization methods used and in the selection of standards may lead to substantial differences in the results obtained. Therefore, unification of the data processing protocols employed is highly desirable. The best performing methods are two-point or multipoint normalization methods based on linear regression. Linear regression is most robust when based on standards that cover the entire range of δ values typically observed in nature, regardless of the δ values of the samples analysed. The uncertainty can be reduced by 50 % if measurements of two different standards are performed four times, or measurements of four standards are performed twice, with each batch of samples. Chemical matrix matching between standards and samples seems to be critical for δ 18O of nitrate or δ 2H of hair samples (thermal conversion/elemental analyser), for example; however, it is not necessarily always critical for all types of samples and techniques (e.g. not for most δ 15N and δ 13C elemental analyser analyses). To ensure that all published data can be recalculated, if δ values of standards or the isotope scales are to be updated, the details of the normalization technique and the δ values of the standards used should always be clearly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coplen TB (2011) Guidelines and recommended terms for expression of stable isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560

    CAS  Google Scholar 

  2. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Article  CAS  Google Scholar 

  3. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Article  CAS  Google Scholar 

  4. Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud 48:393–409

    Article  CAS  Google Scholar 

  5. Wieser MW (2006) Atomic weights of the elements 2005. Pure Appl Chem 78:2051–2066

    Article  CAS  Google Scholar 

  6. Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl Chem 66:273–276

    Article  CAS  Google Scholar 

  7. Coplen TB, Krouse HR, Böhlke JK (1992) Reporting of nitrogen-isotope abundances. Pure Appl Chem 64:907–908

    Article  Google Scholar 

  8. Krouse HR, Coplen TB (1997) Reporting of relative sulfur isotope-ratio data. Pure Appl Chem 69:293–295

    Article  CAS  Google Scholar 

  9. Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder SE, Krouse HR, Rosman KJR, Ding T, Vocke RD, Révész KM, Lamberty A, Taylor P, De Bièvre P (2001) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. US Geological Survey water-resources investigations report 01-4222. US Geological Survey, Reston

    Google Scholar 

  10. Böhlke JK, Coplen TB (1995) Interlaboratory comparison of reference materials for nitrogen-isotope-ratio measurements. In: Reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. International Atomic Energy Agency, Vienna, pp 51–66

    Google Scholar 

  11. Gonfiantini R (1984) Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations, IAEA, Vienna, 19-21 September 1983. Report to the Director General. International Atomic Energy Agency, Vienna

    Google Scholar 

  12. Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    Article  CAS  Google Scholar 

  13. Robinson BW (1995) Sulphur isotope standards. In: Reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. International Atomic Energy Agency, Vienna, pp 39К–45

    Google Scholar 

  14. Brand WA, Coplen TB, Aerts-Bijma AT, Böhlke JK, Gehre M, Geilmann H, Gröning M, Jansen HG, Meijer HAJ, Mroczkowski SJ, Qi H, Soergel K, Stuart-Williams H, Weise SM, Werner RA (2009) Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Commun Mass Spectrom 23:999–1019

    Article  CAS  Google Scholar 

  15. Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997) High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev 16:227–258

    Article  CAS  Google Scholar 

  16. Hałas S, Skrzypek G, Meier-Augenstein W, Pelc A, Kemp H (2011) Inter-laboratory calibration of new silver orthophosphate comparison materials for stable oxygen isotope analysis of phosphates. Rapid Commun Mass Spectrom 25:579–584

    Article  Google Scholar 

  17. Paul D, Skrzypek G, Forizs I (2007) Normalization of measured stable isotope composition to isotope reference scale – a review. Rapid Commun Mass Spectrom 21:3006–3014

    Article  CAS  Google Scholar 

  18. Skrzypek G, Sadler R (2011) A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials. Rapid Commun Mass Spectrom 25:1625–1630

    Article  CAS  Google Scholar 

  19. Skrzypek G, Sadler R, Paul D (2010) Error propagation in normalization of stable isotope data: a Monte Carlo analysis. Rapid Commun Mass Spectrom 24:2697–2705

    Article  CAS  Google Scholar 

  20. Gröning M (2011) Improved water δ2H and δ18O calibration and calculation of measurement uncertainty using a simple software tool. Rapid Commun Mass Spectrom 25:2711–2720

    Article  Google Scholar 

  21. Verkouteren RM, Lee JN (2001) Web-based interactive data processing: application to stable isotope metrology. Fersenius J Anal Chem 370:803–810

    Article  CAS  Google Scholar 

  22. Sharp Z (2007) Principles of stable isotope geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  23. Coplen TB, Qi H (2012) USGS42 and USGS43: human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results. Forensic Sci Int 214:135–141

    Article  CAS  Google Scholar 

  24. Skrzypek G, Paul D (2006) δ13C analyses of calcium carbonate: comparison between the GasBench and elemental analyzer techniques. Rapid Commun Mass Spectrom 20:2915–2920

    Article  CAS  Google Scholar 

  25. Woodley EJ, Loader NJ, McCarroll D, Young GH, Robertson I, Heaton TH, Gagen MH, Warham JO (2012) High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose. Rapid Commun Mass Spectrom 26:109–114

    Article  CAS  Google Scholar 

  26. Skrzypek G, Wiśniewski A, Grierson PF (2011) How cold was it for Neanderthals moving to central Europe during warm phases of the last glaciation? Quat Sci Rev 30:481–487

    Article  Google Scholar 

  27. Meier-Augenstein W, Chartrand MM, Kemp HF, St-Jean G (2011) An inter-laboratory comparative study into sample preparation for both reproducible and repeatable forensic 2 H isotope analysis of human hair by continuous flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 25:3331–3338

    Article  CAS  Google Scholar 

  28. Qi H, Coplen TB (2011) Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol. Rapid Commun Mass Spectrom 25:2209–2222

    Article  CAS  Google Scholar 

  29. Coplen TB, Qi H (2011) USGS42 and USGS43: human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results. Forensic Sci Int 214:135–141

    Article  Google Scholar 

  30. Fourel F, Martineau F, Lécuyer C, Kupka HJ, Lange L, Ojeimi C, Seed M (2011) 18O/16O ratio measurements of inorganic and organic materials by elemental analysis-pyrolysis-isotope ratio mass spectrometry continuous-flow techniques. Rapid Commun Mass Spectrom 25:2691–2696

    Article  CAS  Google Scholar 

  31. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  CAS  Google Scholar 

  32. Casciotti KL, Sigman DM, Hastings M, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912

    Article  CAS  Google Scholar 

  33. Qi HP, Coplen TB (2003) Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry. Chem Geol 199:183–187

    Article  CAS  Google Scholar 

  34. Qi H, Coplen TB, Wassenaar LI (2011) Improved online δ18O measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol. Rapid Commun Mass Spectrom 25:2049–2058

    Article  CAS  Google Scholar 

  35. Coplen TB, Qi H (2010) Applying the silver-tube introduction method for thermal conversion elemental analysis and a new δ2H value for NBS 22 oil. Rapid Commun Mass Spectrom 24:2269–2276

    Article  CAS  Google Scholar 

  36. Gonfiantini R, Stichler W, Rozanski K (1995) Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. In: Reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. International Atomic Energy Agency, Vienna

    Google Scholar 

Download references

Acknowledgments

The author is supported by a Future Fellowship from the Australian Research Council. Valuable suggestions and comments from two anonymous reviewers and the editors are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Skrzypek.

Additional information

Published in the topical collection Isotope Ratio Measurements: New Developments and Applications with guest editors Klaus G. Heumann and Torsten C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem 405, 2815–2823 (2013). https://doi.org/10.1007/s00216-012-6517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6517-2

Keywords

Navigation