Skip to main content
Log in

Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Streptomyces coelicolor A3(2) has three additional glnA-type genes besides the glutamine synthetase genes glnA (encoding GSI) and glnII (encoding GSII). The aim of this work was to characterize their functional properties and regulation. Sequence analyses revealed that GlnA2, GlnA3, and GlnA4 are dissimilar to S. coelicolor GSI and lack highly conserved amino acid residues involved in catalysis. In heterologous expression experiments, glnA2, glnA3, and glnA4, in contrast to glnA and glnII, were not capable of complementing the l-glutamine auxotrophy of an Escherichia coli glnA mutant. The lack of a conserved sequence motif reflecting adenylylation control of enzyme activity suggests that GlnA2, GlnA3, and GlnA4 are not regulated via adenylyltransferase-mediated modification. In DNA-binding assays, the OmpR-like regulator of nitrogen metabolism GlnRII, which interacts with the glnA and glnII promoters, did not bind to the upstream regions of glnA2, glnA3, and glnA4. These findings support the conclusion that glnA2, glnA3, and glnA4 are not directly involved in l-glutamine synthesis and nitrogen assimilation and are not subject to nitrogen control in S. coelicolor. The glnA3 gene product is similar to FluG, which is required for asexual sporulation in Aspergillus nidulans. However, inactivation of glnA3 does not block morphological differentiation in S. coelicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • de Azevedo Wäsch SI, van der Ploeg JR, Maire T, Lebreton A, Kiener A, Leisinger T. (2002) Transformation of isopropylamine to l-alaninol by Pseudomonas sp. strain KIE171 involves N-glutamylated intermediates. Appl Environ Microbiol 68:2368–2375

    Article  PubMed  Google Scholar 

  • Backman K, Chen Y-M, Magasanik B (1981) Physical and genetic characterization of the glnA–glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci USA 78:3743–3747

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–141

    Article  PubMed  CAS  Google Scholar 

  • Behrmann I, Hillemann D, Pühler A, Strauch E, Wohlleben W (1990) Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 172:5326–5334

    PubMed  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Blondelet-Rouault MH, Weiser J, Lebrihi A, Branny P, Pernodet JL (1997) Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315–317

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn FJ, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto WW, Ausubel FM, Schell J (1989) Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J Bacteriol 171:1673–1682

    PubMed  Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Biotechniques 5:376–378

    CAS  Google Scholar 

  • Burkovski A (2003) Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev 27:617–628

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Losick R (1996) The mycelial life-style of Streptomyces coelicolor A3(2) and its relatives. In: Shapiro JH, Dworkin M (eds) Bacteria as multicellular organisms. Oxford University Press, New York, pp 93–114

    Google Scholar 

  • Chiurazzi M, Meza R, Lara M, Lahm A, Defez R, Iaccarino M, Espin G (1992) The Rhizobium leguminosarum biovar phaseoli glnT gene, encoding glutamine synthetase III. Gene 119:1–8

    Article  PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Collins DM, Wilson T, Campbell S, Buddle BM, Wards BJ, Hotter G, De Lisle GW (2002) Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures. Microbiology 148:3019–3027

    PubMed  CAS  Google Scholar 

  • D’Souza CA, Lee BN, Adams TH (2001) Characterization of the role of the FluG protein in asexual development of Aspergillus nidulans. Genetics 158:1027–1036

    PubMed  CAS  Google Scholar 

  • Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122–145

    PubMed  CAS  Google Scholar 

  • Fink D, Falke D, Wohlleben W, Engels A (1999) Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Microbiology 145:2313–2322

    PubMed  CAS  Google Scholar 

  • Fink D, Weißschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  PubMed  CAS  Google Scholar 

  • Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! Mol Microbiol 32:223–232

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Goodman HJ, Woods DR (1993) Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J Gen Microbiol 139:1487–1493

    PubMed  CAS  Google Scholar 

  • Hill RT, Parker JR, Goodman HJ, Jones DT, Woods DR (1989) Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microbiol 135:3271–3279

    PubMed  CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Jakoby M, Tesch M, Sahm H, Kramer R, Burkovski A (1997) Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 154:81–88

    Article  PubMed  CAS  Google Scholar 

  • Janssen PJ, Jones WA, Jones DT, Woods DR (1988) Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum. J Bacteriol 170:400–408

    PubMed  CAS  Google Scholar 

  • Karandikar A, Sharples GP, Hobbs G (1997) Differentiation of Streptomyces coelicolor A3(2) under nitrate limited conditions. Microbiology 143:3581–3590

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner M, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kumada Y, Takano E, Nagaoka K, Thompson CJ (1990) Streptomyces hygroscopicus has two glutamine synthetase genes. J Bacteriol 172:5343–5351

    PubMed  CAS  Google Scholar 

  • Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651

    PubMed  CAS  Google Scholar 

  • Magasanik B (1996) Regulation of nitrogen utilization. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology Press, Washington, pp 1344–1356

    Google Scholar 

  • Mathis R, Gamas P, Meyer Y, Cullimore JV (2000) The presence of GSI-like genes in higher plants: support for the paralogous evolution of GSI and GSII genes. J Mol Evol 50:116–122

    PubMed  CAS  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Nakano Y, Kimura K (1991) Purification and characterization of a repressor for the Bacillus cereus glnRA operon. J Biochem (Tokyo) 109:223–228

    CAS  Google Scholar 

  • Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    PubMed  CAS  Google Scholar 

  • Nguyen KT, Nguyen LT, Behal V (1994) What type of glutamine synthetase is important for Streptomyces coelicolor A3(2) under nitrogen-limited growth conditions? Biotech Lett 16:1027–1030

    Article  CAS  Google Scholar 

  • Nolden L, Farwick M, Kramer R, Burkovski A (2001) Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201:91–98

    Article  PubMed  CAS  Google Scholar 

  • Reitzer LJ (1996) Sources of nitrogen and their utilization. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology Press, Washington, pp 380–390

    Google Scholar 

  • Reyes JC, Florencio FJ (1994) A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol 176:1260–1267

    PubMed  CAS  Google Scholar 

  • Rossbach S, Schell J, de Bruijn FJ. (1988). Cloning and analysis of Agrobacterium tumefaciens C58 loci involved in glutamine biosynthesis: neither the glnA (GSI) nor the glnII (GSII) gene plays a role in virulence. Mol Gen Genet 212:38–47

    Article  CAS  Google Scholar 

  • Sambrook JE, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shapiro BM, Stadtman ER (1970) The regulation of glutamine synthesis in microorganisms. Annu Rev Microbiol 24:501–524

    Article  PubMed  CAS  Google Scholar 

  • Shatters RG, Liu Y, Kahn ML (1993) Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. J Biol Chem 268:469–475

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tullius MV, Harth G, Horwitz MA (2003) Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71:3927–3936

    Article  PubMed  CAS  Google Scholar 

  • Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872–5881

    PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  PubMed  CAS  Google Scholar 

  • Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiology 147:2447–2459

    PubMed  CAS  Google Scholar 

  • Weißschuh N, Fink D, Vierling S, Bibb M, Wohlleben W, Engels A (2000) Transcriptional analysis of the glutamine synthetase II and two upstream genes in Streptomyces coelicolor A3(2). Mol Gen Genet 264:461–469

    Article  Google Scholar 

  • Wray LV, Fisher SH (1988) Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase. Gene 71:247–255

    Article  PubMed  CAS  Google Scholar 

  • Wray LV, Fisher SH (1991) Identification and cloning of the glnR locus, which is required for transcription of the glnA gene in Streptomyces coelicolor. J Bacteriol 173:7351–7360

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Regina Ort-Winklbauer and Annette Latus for excellent technical assistance, and Eriko Takano for critical reading of the manuscript. This work was financed in part by the Fachagentur Nachwachsende Rohstoffe e.V. (grant 99NR068) and by the EU (ActinoGEN; LSHM-CT-2004-005224). The work has been carried out in compliance with the current German laws governing genetic experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wohlleben.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rexer, H.U., Schäberle, T., Wohlleben, W. et al. Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2). Arch Microbiol 186, 447–458 (2006). https://doi.org/10.1007/s00203-006-0159-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0159-8

Keywords

Navigation