Skip to main content
Log in

Fine mapping of a silique length- and seed weight-related gene in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Using microarray analysis combined with map-based cloning, a major locus positively regulating SL and SW was mapped to a 98.47 kb interval on A09 in rapeseed.

Abstract

In rapeseed, seed yield is closely associated with silique-related traits such as silique length (SL) and seed weight (SW). Previously identified quantitative trait loci (QTLs) revealed that SL and SW are complex traits and many QTLs overlap. However, the genetic characterization of the association between SL and SW is poorly understood. In the present study, a BC3F3 near isogenic line developed from a short silique plant and the long silique cultivar ‘ZS11’ was analyzed to identify the locus related to SL. Map-based cloning indicated that a major locus acting as a single Mendelian factor was mapped to a 98.47 kb region on chromosome A09. BLAST analysis and DNA sequencing showed SNP variations and a fragment replacement in the upstream region of the candidate gene BnaA09g55530D may alter gene expression and influence SL. The results showed that this SL locus may also positively affect SW as well as in the 186 rapeseed accessions identified by the associated markers. Therefore, selecting plants with appropriate SL and developing functional markers for the associated gene could play important roles in the molecular breeding of high-yield rapeseed varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai XF, Huang Y, Hu Y, Liu HY, Zhang B, Smaczniak C, Hu G, Han ZM, Xing YZ (2017) Duplication of an upstream silencer of FZP increases grain yield in rice. Nat Plants 3:885–893

    Article  CAS  Google Scholar 

  • Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P, Reed JW (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71:684–697

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan GY, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  • Chapman MA, Tang S, Draeger D, Nambeesan S, Shaffer H, Barb JG, Knapp SJ, Burke JM (2012) Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet 8:e1002628

    Article  CAS  Google Scholar 

  • Chay P, Thurling N (1989a) Identification of genes controlling pod length in spring rapeseed, Brassica napus L, and their utilization for yield improvement. Plant Breed 103:54–62

    Article  Google Scholar 

  • Chay P, Thurling N (1989b) Variation in pod length in spring rape (Brassica napus) and its effect on seed yield and yield components. J Agric Sci 113:139–147

    Article  Google Scholar 

  • Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858

    Article  CAS  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IA (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899

    Article  CAS  Google Scholar 

  • Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67:35–49

    Article  Google Scholar 

  • Dong HL, Tan CD, Li YZ, He Y, Wei S, Cui YX, Chen YG, Wei DY, Fu Y, He YJ, Wan HF, Liu Z, Xiong Q, Lu K, Li JN, Qian W (2018) Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci 9:921. https://doi.org/10.3389/fpls.2018.00921

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301

    Article  CAS  Google Scholar 

  • Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407

    Article  CAS  Google Scholar 

  • Glover NM, Redestig H, Dessimoz C (2016) Homoeologs: what are they and how do we infer them? Trends Plant Sci 21:609–621

    Article  CAS  Google Scholar 

  • Hou JN, Long Y, Raman H, Zou XX, Wang J, Dai ST, Xiao QQ, Li C, Fan LJ, Liu B, Meng JL (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238

    Article  CAS  Google Scholar 

  • Huo X, Wu S, Zhu ZF, Liu FX, Fu YC, Cai HW, Sun XY, Gu P, Xie DX, Tan LB, Sun CQ (2017) NOG1 increases grain production in rice. Nat Commun 8:1497

    Article  Google Scholar 

  • Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, Kim WY, Jun SE, Yoon EK, Lim J, Ohme-Takagi M, Kim D, Park J, Kim GT, Cheon CI (2015) Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol 205:316–328

    Article  CAS  Google Scholar 

  • Ito T, Meyerowitz EM (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12:1541–1550

    Article  CAS  Google Scholar 

  • Khan F, Ali S, Shakeel A, Saeed A, Abbas G (2006) Correlation analysis of some quantitative characters in Brassica napus L. J Agric Res 44:7–14

    Google Scholar 

  • King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160

    Article  CAS  Google Scholar 

  • Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A (2012) Enhancers and silencers: an integrated and simple model for their function. Epigenet Chromatin 5:1

    Article  CAS  Google Scholar 

  • Kong Y, Zhu Y, Gao C, She W, Lin W, Chen Y, Han N, Bian H, Zhu M, Wang J (2013) Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol 54:609–621

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li N, Shi J, Wang X, Liu G, Wang H (2014) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14:114

    Article  Google Scholar 

  • Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170:114.e15–126.e15

    Article  Google Scholar 

  • Li N, Song D, Peng W, Zhan J, Shi J, Wang X, Liu G, Wang H (2018) Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J 1:1. https://doi.org/10.1111/pbi.13011

    Article  CAS  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA 112:E5123–E5132

    Article  CAS  Google Scholar 

  • Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y (2016) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129:1203–1215

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    Article  Google Scholar 

  • Porto MS, Pinheiro MP, Batista VG, dos Santos RC, Filho Pde A, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56:38–49

    Article  CAS  Google Scholar 

  • Rossato L, Laine P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52:1655–1663

    Article  CAS  Google Scholar 

  • Sadat HA, Nematzadeh GA, Jelodar NB, Chapi OG (2010) Genetic evaluation of yield and yield components at advanced generations in rapeseed (Brassica napus L.). Afr J Agric Res 5:1958–1964

    Google Scholar 

  • Samizadeh H, Samadi BY, Behamta M, Taleii A, Stringam G (2007) Study of pod length trait in doubled haploid Brassica napus population by molecular markers. J Agric Sci 9:129–136

    Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  Google Scholar 

  • Sotelo-Silveira M, Cucinotta M, Chauvin AL, Montes RAC, Colombo L, Marsch-Martinez N, de Folter S (2013) Cytochrome P450 CYP78A9 is involved in arabidopsis reproductive development. Plant Physiol 162:779–799

    Article  CAS  Google Scholar 

  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee SM, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J 92:452–468

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Wang X, Chen L, Wang A, Wang H, Tian J, Zhao X, Chao H, Zhao Y, Zhao W, Xiang J, Gan J, Li M (2016) Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol 16:71

    Article  CAS  Google Scholar 

  • Xia SQ, Cheng L, Zu F, Dun XL, Zhou ZF, Yi B, Wen J, Ma CZ, Shen JX, Tu JX, Fu TD (2012) Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet 124:1193–1200

    Article  CAS  Google Scholar 

  • Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52

    CAS  PubMed  Google Scholar 

  • Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125:285–296

    Article  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  Google Scholar 

  • Zhao X, Li B, Zhang K, Hu K, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J (2016) Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in Brassica napus. Sci Rep 6:29553

    Article  CAS  Google Scholar 

  • Zhou ZF, Dun XL, Xia SQ, Shi DY, Qin MM, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD (2012) BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J Exp Bot 63:2041–2058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Professor Yongming Zhou and Professor Liang Guo for kindly providing the silique length and seed weight data of the 521 accessions. This work was financed by the funding from the National Key Research and Development Program of China (Grant Number 2016YFD0100305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Tu.

Ethics declarations

Ethical standard

The authors declare that this study complies with current laws of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Albrecht E. Melchinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2019_3400_MOESM1_ESM.tif

Phenotypic characterization of flowers and pollen between ‘ZS11’ (a, c, e) and ‘DH46’ (b, d, f). a, b, c, d Flower phenotypes of the two parents, bar, 0.5 cm. e and f Pollen viability by acetocarmine staining, bars, 100 μm (TIFF 4643 kb)

122_2019_3400_MOESM2_ESM.tif

Different silique phenotypes in BC3F2 generation. Siliques with no seed development defects (a and d) and have defects (b, c, e and f). Long siliques: a, b, and c; short siliques: d, e, and f. Bar, 2 cm (TIFF 2166 kb)

122_2019_3400_MOESM3_ESM.tif

Relative expression of BnaA09g55530D homoeologous genes in different silique development stages between L- and S-NIL plants. a BnaA04g00510D, b BnaC08g31760D, and c BnaCnng73170D. L1: 0–2 mm buds; L2–L4: 2–4, 4–6, and 6–8 mm pistils of buds. ***, significantly different at P < 0.001; **, significantly different at P < 0.01; *, significantly different at P < 0.05 (TIFF 25696 kb)

Molecular makers designed in this study (DOCX 13 kb)

Primer developed for co-segregation and relative expression analyses (DOCX 12 kb)

Descriptions of B. napus accessions and phenotype data used in this study (XLSX 19 kb)

Sequence alignments of the ~ 3.9 kb upstream sequences of BnaA09g55530D in ZS11 and DH46 (DOCX 14 kb)

Detailed sequence of~ 3.6 kb replaced fragment in ZS11 (DOCX 14 kb)

Detailed sequence of~ 12.4 kb replaced fragment in DH46 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Qin, P., Yan, M. et al. Fine mapping of a silique length- and seed weight-related gene in Brassica napus. Theor Appl Genet 132, 2985–2996 (2019). https://doi.org/10.1007/s00122-019-03400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03400-6

Navigation