Skip to main content
Log in

Ablation of serum response factor in hepatic stellate cells attenuates liver fibrosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Trans-differentiation, or activation, of hepatic stellate cells (HSCs) is a hallmark event in liver fibrosis although the underlying mechanism is not fully appreciated. Serum response factor (SRF) is a pleiotropic sequence-specific transcription factor with a ubiquitous expression pattern. In the present study, we investigated the effect of HSC-specific ablation of SRF on liver fibrosis in vivo and the underlying mechanism. We report that SRF bound to the promoter regions of pro-fibrogenic genes, including collagen type I (Col1a1/Col1a2) and alpha smooth muscle actin (Acta2), with greater affinity in activated HSCs compared to quiescent HSCs. Ablation of SRF in HSCs in vitro downregulated the expression of fibrogenic genes by dampening the accumulation of active histone marks. SRF also interacted with MRTF-A, a well-documented co-factor involved in liver fibrosis, on the pro-fibrogenic gene promoters during HSC activation. In addition, SRF directly regulated MRTF-A transcription in activated HSCs. More importantly, HSC conditional SRF knockout (CKO) mice developed a less robust pro-fibrogenic response in the liver in response to CCl4 injection and BDL compared to wild-type littermates. In conclusion, our data demonstrate that SRF may play an essential role in HSC activation and liver fibrosis.

Key messages

• SRF deficiency decelerates activation of hepatic stellate cells (HSCs) in vitro.

• SRF epigenetically activates pro-fibrogenic transcription to promote HSC maturation.

• SRF interacts with MRTF-A and contributes to MRTF-A transcription.

• Conditional SRF deletion in HSCs attenuates BDL-induced liver fibrosis in mice.

• Conditional SRF ablation in HSCs attenuates CCl4-induced liver fibrosis in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HSC:

Hepatic stellate cell

SRF:

Serum response factor

BDL:

Bile duct ligation

MRTF-A:

Myocardin-related transcription factor A

CKO:

Conditional knockout

ChIP:

Chromatin immunoprecipitation

α-SMA:

Alpha smooth muscle actin

References

  1. Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY (2017) DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta 1863:2389–2397

    CAS  PubMed Central  Google Scholar 

  2. Bochaton-Piallat ML, Gabbiani G, Hinz B (2016) The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research 5. https://doi.org/10.12688/f1000research.8190.1

    Google Scholar 

  3. Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, Lin JSC, Aronow BJ, Tallquist MD et al (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7:12260

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61:1066–1079

    PubMed  PubMed Central  Google Scholar 

  5. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    PubMed  PubMed Central  Google Scholar 

  6. Friedman SL (2010) Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 7:425–436

    PubMed  Google Scholar 

  7. Miano JM (2010) Role of serum response factor in the pathogenesis of disease. Lab Investig 90:1274–1284

    CAS  PubMed  Google Scholar 

  8. Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35:577–593

    CAS  PubMed  Google Scholar 

  9. Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN (2002) Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A 99:14855–14860

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Small EM (2012) The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 5:794–804

    PubMed  Google Scholar 

  11. Tagalakis AD, Madaan S, Larsen SD, Neubig RR, Khaw PT, Rodrigues I, Goyal S, Lim KS, Yu-Wai-Man C (2018) In vitro and in vivo delivery of a sustained release nanocarrier-based formulation of an MRTF/SRF inhibitor in conjunctival fibrosis. J Nanobiotechnol 16:97

    CAS  Google Scholar 

  12. Fernando O, Tagalakis AD, Awwad S, Brocchini S, Khaw PT, Hart SL, Yu-Wai-Man C (2018) Development of targeted siRNA nanocomplexes to prevent fibrosis in experimental glaucoma filtration surgery. Mol Ther 26:2812–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT (2016) Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep 6:21881

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sisson TH, Ajayi IO, Subbotina N, Dodi AE, Rodansky ES, Chibucos LN, Kim KK, Keshamouni VG, White ES, Zhou Y, Higgins PDR, Larsen SD, Neubig RR, Horowitz JC (2015) Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am J Pathol 185:969–986

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang M, Ku WY, Fu J, Offermanns S, Hsu W, Que J (2013) Gpr177 regulates pulmonary vasculature development. Development 140:3589–3594

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng J, Mao Y, Dong P, Huang Z, Yu F (2019) Long noncoding RNA HOTTIP mediates SRF expression through sponging miR-150 in hepatic stellate cells. J Cell Mol Med 23:1572–1580

    CAS  PubMed  Google Scholar 

  17. You K, Li SY, Gong J, Fang JH, Zhang C, Zhang M, Yuan Y, Yang J, Zhuang SM (2018) MicroRNA-125b promotes hepatic stellate cell activation and liver fibrosis by activating RhoA signaling. Mol Ther Nucleic Acids 12:57–66

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Takata A, Otsuka M, Kishikawa T, Yamagami M, Ishibashi R, Sekiba K, Suzuki T, Ohno M, Yamashita Y, Abe T et al (2017) RASAL1 is a potent regulator of hepatic stellate cell activity and liver fibrosis. Oncotarget 8:64840–64852

    PubMed  PubMed Central  Google Scholar 

  19. Guo B, Lyu Q, Slivano OJ, Dirkx R, Christie CK, Czyzyk J, Hezel AF, Gharavi AG, Small EM, Miano JM (2018) Serum response factor is essential for maintenance of podocyte structure and function. J Am Soc Nephrol 29:416–422

    CAS  PubMed  Google Scholar 

  20. Li M, Hong W, Hao C, Li L, Wu D, Shen A, Lu J, Zheng Y, Li P, Xu Y (2018) SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. FASEB J 32:500–511

    CAS  PubMed  Google Scholar 

  21. Li M, Hong W, Hao C, Li L, Xu H, Li P, Xu Y (2017) Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice. Biochim Biophys Acta 1863:3202–3211

    CAS  Google Scholar 

  22. Zhou B, Zeng S, Li L, Fan Z, Tian W, Li M, Xu H, Wu X, Fang M, Xu Y (2016) Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-beta signaling. Biochim Biophys Acta 1862:1203–1213

    CAS  PubMed  Google Scholar 

  23. Tian W, Hao C, Fan Z, Weng X, Qin H, Wu X, Fang M, Chen Q, Shen A, Xu Y (2015) Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells. J Hepatol 62:165–174

    CAS  PubMed  Google Scholar 

  24. Yang Y, Chen D, Yuan Z, Fang F, Cheng X, Xia J, Fang M, Xu Y, Gao Y (2013) Megakaryocytic leukemia 1 (MKL1) ties the epigenetic machinery to hypoxia-induced transactivation of endothelin-1. Nucleic Acids Res 41:6005–6017

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang F, Yang Y, Yuan Z, Gao Y, Zhou J, Chen Q, Xu Y (2011) Myocardin-related transcription factor A mediates OxLDL-induced endothelial injury. Circ Res 108:797–807

    CAS  PubMed  Google Scholar 

  26. Li Z, Chen B, Dong W, Xu W, Song M, Fang M, Guo J, Xu Y (2018) Epigenetic activation of PERP transcription by MKL1 contributes to ROS-induced apoptosis in skeletal muscle cells. Biochim Biophys Acta Gene Reg Mech 1861:905–915

    CAS  Google Scholar 

  27. Li Z, Chen B, Weng X, Yu L, Song M, Fang M, Guo J, Xu Y (2018) The histone methyltransferase SETD1A regulates thrombomodulin transcription in vascular endothelial cells. Biochim Biophys Acta Gene Reg Mech 1861:752–761

    CAS  Google Scholar 

  28. Zeng S, Wu X, Chen X, Xu H, Zhang T, Xu Y (2018) Hypermethylated in cancer 1 (HIC1) mediates high glucose induced ROS accumulation in renal tubular epithelial cells by epigenetically repressing SIRT1 transcription. Biochim Biophys Acta Gene Reg Mech 1861:917–927

    CAS  Google Scholar 

  29. Weng X, Zhang Y, Li Z, Yu L, Xu F, Fang M, Hou L, Ge J, Xu Y (2019) Class II transactivator (CIITA) mediates IFN-gamma induced eNOS repression by enlisting SUV39H1. Biochim Biophys Acta Gene Reg Mech 1862:163–172

    CAS  Google Scholar 

  30. Shao J, Weng X, Zhuo L, Yu L, Li Z, Shen K, Xu W, Fang M, Xu Y (2019) Angiotensin II induced CSF1 transcription is mediated by a crosstalk between different epigenetic factors in vascular endothelial cells. Biochim Biophys Acta Gene Reg Mech 1862:1–11

    CAS  Google Scholar 

  31. Li Z, Zhang X, Liu S, Zeng S, Yu L, Yang G, Guo J, Xu Y (2018) BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol basis Dis 1864:3477–3486

    CAS  PubMed  Google Scholar 

  32. Li N, Kong M, Zeng S, Hao C, Li M, Li L, Xu Z, Zhu M, Xu Y (2019) Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/beta-catenin pathway in mice. FASEB J 33:327–338

    PubMed  Google Scholar 

  33. Li N, Li M, Hong W, Shao J, Xu H, Shimano H, Lu J, Xu Y (2018) Brg1 regulates pro-lipogenic transcription by modulating SREBP activity in hepatocytes. Biochim Biophys Acta Mol Basis Dis 1864:2881–2889

    CAS  PubMed  Google Scholar 

  34. Li N, Kong M, Zeng S, Xu Z, Li M, Hong W, Chu X, Sun X, Zhu M, Xu Y (2018) The chromatin remodeling protein BRG1 regulates APAP-induced liver injury by modulating CYP3A11 transcription in hepatocyte. Biochim Biophys Acta Mol basis Dis 1864:3487–3495

    CAS  PubMed  Google Scholar 

  35. Luchsinger LL, Patenaude CA, Smith BD, Layne MD (2011) Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. J Biol Chem 286:44116–44125

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN (2010) Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 107:294–304

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 116:36–48

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan Z, Hao C, Li M, Dai X, Qin H, Li J, Xu H, Wu X, Zhang L, Fang M, Zhou B, Tian W, Xu Y (2015) MKL1 is an epigenetic modulator of TGF-beta induced fibrogenesis. Biochim Biophys Acta Gene Reg Mech 1849:1219–1228

    CAS  Google Scholar 

  39. Tian W, Fan Z, Li J, Hao C, Li M, Xu H, Wu X, Zhou B, Zhang L, Fang M, Xu Y (2016) Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-beta signaling. Int J Biochem Cell Biol 71:35–43

    CAS  PubMed  Google Scholar 

  40. Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, Fang M, Xu Y (2015) Myocardin-related transcription factor a epigenetically regulates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 26:1648–1660

    CAS  PubMed  Google Scholar 

  41. Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Valdez PA, Ding J, Peng I, Sebrell A, Caplazi P, DeVoss J, Soriano RH, Sai T, Lu R, Modrusan Z, Hackney J, Ouyang W (2014) NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509:235–239

    CAS  PubMed  Google Scholar 

  43. Yang Y, Yu X (2003) Regulation of apoptosis: the ubiquitous way. FASEB J 17:790–799

    CAS  PubMed  Google Scholar 

  44. Ribera J, Pauta M, Melgar-Lesmes P, Cordoba B, Bosch A, Calvo M, Rodrigo-Torres D, Sancho-Bru P, Mira A, Jimenez W et al (2017) A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury. Am J Physiol Gastrointest Liver Physiol 313:G492–G504

    PubMed  Google Scholar 

  45. Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, Liu X, Xu J, Wang P, Paik YH, Meng F, Asagiri M, Murray LA, Hofmann AF, Iida T, Glass CK, Brenner DA, Kisseleva T (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 111:E3297–E3305

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Han X, Hao C, Li L, Li J, Fang M, Zheng Y, Lu J, Li P, Xu Y (2017) HDAC4 stimulates MRTF-A expression and drives fibrogenesis in hepatic stellate cells by targeting miR-206. Oncotarget 8:47586–47594

    PubMed  PubMed Central  Google Scholar 

  47. McDonald OG, Owens GK (2007) Programming smooth muscle plasticity with chromatin dynamics. Circ Res 100:1428–1441

    CAS  PubMed  Google Scholar 

  48. Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143:156–169

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA, Lau LF, Chaqour B (2009) Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284:23125–23136

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lockman K, Taylor JM, Mack CP (2007) The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Circ Res 101:e115–e123

    CAS  PubMed  Google Scholar 

  51. Zhang M, Fang H, Zhou J, Herring BP (2007) A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression. J Biol Chem 282:25708–25716

    CAS  PubMed  Google Scholar 

  52. Yu L, Fang F, Dai X, Xu H, Qi X, Fang M, Xu Y (2017) MKL1 defines the H3K4Me3 landscape for NF-kappaB dependent inflammatory response. Sci Rep 7:191

    PubMed  PubMed Central  Google Scholar 

  53. Liu L, Wu X, Xu H, Yu L, Zhang X, Li L, Jin J, Zhang T, Xu Y (2018) Myocardin-related transcription factor A (MRTF-A) contributes to acute kidney injury by regulating macrophage ROS production. Biochim Biophys Acta Mol Basis Dis 1864:3109–3121

    CAS  PubMed  Google Scholar 

  54. Liu L, Mao L, Wu X, Wu T, Liu W, Yang Y, Zhang T, Xu Y (2019) BRG1 regulates endothelial-derived IL-33 to promote ischemia-reperfusion induced renal injury and fibrosis in mice. Biochim Biophys Acta Mol Basis Dis 1865:2551–2561

    CAS  PubMed  Google Scholar 

  55. Liu L, Hong W, Li M, Ren H, Wang J, Xu H, Shi X, Xu Y (2019) A cross talk between BRG1 and males absent on the first contributes to reactive oxygen species production in a mouse model of nonalcoholic steatohepatitis. Antioxid Redox Signal 30:1539–1552

    CAS  Google Scholar 

  56. Weng X, Yu L, Liang P, Li L, Dai X, Zhou B, Wu X, Xu H, Fang M, Chen Q, Xu Y (2015) A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 82:48–58

    CAS  PubMed  Google Scholar 

  57. Zhang X, Liu S, Weng X, Wu T, Yu L, Xu Y, Guo J (2018) Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J Mol Cell Cardiol 125:6–17

    CAS  PubMed  Google Scholar 

  58. Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported, in part, by grants from the National Natural Science Foundation of China (81725001, 81700554, 81770487), from the Nanjing Municipal Administration of Health and Human Services (YKK17061), from the Fundamental Research Funds for Central Universities (021414380323), and from the Haihan Province R&D Fund Key Project (ZDYF2018102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Li, Yong Xu or Junli Guo.

Ethics declarations

All the animal protocols were reviewed and approved by the intramural Ethics Committee on Humane Treatment of Experimental Animals.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, M., Hong, W., Shao, Y. et al. Ablation of serum response factor in hepatic stellate cells attenuates liver fibrosis. J Mol Med 97, 1521–1533 (2019). https://doi.org/10.1007/s00109-019-01831-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01831-8

Keywords

Navigation