Skip to main content

Advertisement

Log in

CpG-ODN-induced sustained expression of BTLA mediating selective inhibition of human B cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

BTLA (B- and T-lymphocyte attenuator) is a prominent co-receptor that is structurally and functionally related to CTLA-4 and PD-1. In T cells, BTLA inhibits TCR-mediated activation. In B cells, roles and functions of BTLA are still poorly understood and have never been studied in the context of B cells activated by CpG via TLR9. In this study, we evaluated the expression of BTLA depending on activation and differentiation of human B cell subsets in peripheral blood and lymph nodes. Stimulation with CpG upregulated BTLA, but not its ligand: herpes virus entry mediator (HVEM), on B cells in vitro and sustained its expression in vivo in melanoma patients after vaccination. Upon ligation with HVEM, BTLA inhibited CpG-mediated B cell functions (proliferation, cytokine production, and upregulation of co-stimulatory molecules), which was reversed by blocking BTLA/HVEM interactions. Interestingly, chemokine secretion (IL-8 and MIP1β) was not affected by BTLA/HVEM ligation, suggesting that BTLA-mediated inhibition is selective for some but not all B cell functions. We conclude that BTLA is an important immune checkpoint for B cells, as similarly known for T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BTLA:

B- and T-lymphocyte attenuator

CFSE:

Carboxyfluoresceine diacetate succinimidyl ester

HVEM:

Herpes virus entry mediator

PBMC:

Peripheral blood mononuclear cells

s.c.:

Subcutaneous

TLR:

Toll-like receptor

References

  1. Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165

    Article  PubMed  CAS  Google Scholar 

  2. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679

    Article  PubMed  CAS  Google Scholar 

  3. Han P, Goularte OD, Rufner K, Wilkinson B, Kaye J (2004) An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol 172:5931–5939

    PubMed  CAS  Google Scholar 

  4. Hurchla MA, Sedy JR, Gavrieli M, Drake CG, Murphy TL, Murphy KM (2005) B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4+ T cells. J Immunol 174:3377–3385

    PubMed  CAS  Google Scholar 

  5. Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM (2003) Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun 312:1236–1243

    Article  PubMed  CAS  Google Scholar 

  6. Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, Scheu S, Pfeffer K, Ware CF, Murphy TL et al (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6:90–98

    Article  PubMed  CAS  Google Scholar 

  7. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120:157–167

    Article  PubMed  CAS  Google Scholar 

  8. Krieg C, Han P, Stone R, Goularte OD, Kaye J (2005) Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol 175:6420–6427

    PubMed  CAS  Google Scholar 

  9. Otsuki N, Kamimura Y, Hashiguchi M, Azuma M (2006) Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun 344:1121–1127

    Article  PubMed  CAS  Google Scholar 

  10. Vendel AC, Calemine-Fenaux J, Izrael-Tomasevic A, Chauhan V, Arnott D, Eaton DL (2009) B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. J Immunol 182:1509–1517

    PubMed  CAS  Google Scholar 

  11. Peng SL (2005) Signaling in B cells via Toll-like receptors. Curr Opin Immunol 17:230–236

    Article  PubMed  CAS  Google Scholar 

  12. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  13. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  PubMed  CAS  Google Scholar 

  14. Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A (2003) The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 102:956–963

    Article  PubMed  Google Scholar 

  15. Busconi L, Bauer JW, Tumang JR, Laws A, Perkins-Mesires K, Tabor AS, Lau C, Corley RB, Rothstein TL, Lund FE et al (2007) Functional outcome of B cell activation by chromatin immune complex engagement of the B cell receptor and TLR9. J Immunol 179:7397–7405

    PubMed  CAS  Google Scholar 

  16. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  17. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  PubMed  CAS  Google Scholar 

  18. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19:837–847

    Article  PubMed  CAS  Google Scholar 

  19. Lienard D, Rimoldi D, Marchand M, Dietrich PY, van Baren N, Geldhof C, Batard P, Guillaume P, Ayyoub M, Pittet MJ et al (2004) Ex vivo detectable activation of Melan-A-specific T cells correlating with inflammatory skin reactions in melanoma patients vaccinated with peptides in IFA. Cancer Immun 4:4

    PubMed  Google Scholar 

  20. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115:739–746

    PubMed  CAS  Google Scholar 

  21. Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, Fong S, van Lookeren CM, Godowski P, Williams PM et al (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331

    Article  PubMed  CAS  Google Scholar 

  22. Suryani S, Fulcher DA, Santner-Nanan B, Nanan R, Wong M, Shaw PJ, Gibson J, Williams A, Tangye SG (2010) Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. Blood 115:519–529

    Article  PubMed  CAS  Google Scholar 

  23. Serriari NE, Gondois-Rey F, Guillaume Y, Remmerswaal EB, Pastor S, Messal N, Truneh A, Hirsch I, van Lier RA, Olive D (2010) B and T lymphocyte attenuator is highly expressed on CMV-specific T cells during infection and regulates their function. J Immunol 185:3140–3148

    Article  PubMed  CAS  Google Scholar 

  24. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  PubMed  CAS  Google Scholar 

  25. Klein U, Rajewsky K, Kuppers R (1998) Human immunoglobulin (Ig)M + IgD + peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188:1679–1689

    Article  PubMed  CAS  Google Scholar 

  26. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz I, Anolik JH (2009) Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol 182:5982–5993

    Article  PubMed  CAS  Google Scholar 

  27. M’Hidi H, Thibult ML, Chetaille B, Rey F, Bouadallah R, Nicollas R, Olive D, Xerri L (2009) High expression of the inhibitory receptor BTLA in T-follicular helper cells and in B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Am J Clin Pathol 132:589–596

    Article  PubMed  Google Scholar 

  28. Harwood NE, Batista FD (2011) The cytoskeleton coordinates the early events of B-cell activation. Cold Spring Harb, Perspect Biol 3(2)

  29. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  30. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, Lamers MC, Carsetti R (1999) B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 190:75–89

    Article  PubMed  CAS  Google Scholar 

  31. Carsetti R, Rosado MM, Wardmann H (2004) Peripheral development of B cells in mouse and man. Immunol Rev 197:179–191

    Article  PubMed  Google Scholar 

  32. Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG, Hermine O, Fischer A, Reynaud CA, Weill JC (2001) CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci U S A 98:1166–1170

    Article  PubMed  CAS  Google Scholar 

  33. Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH, Berner R, Peters A, Boehm T, Plebani A et al (2003) Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 197:939–945

    Article  PubMed  CAS  Google Scholar 

  34. Murphy TL, Murphy KM (2010) Slow down and survive: enigmatic immunoregulation by BTLA and HVEM. Annu Rev Immunol 28:389–411

    Article  PubMed  CAS  Google Scholar 

  35. Oya Y, Watanabe N, Owada T, Oki M, Hirose K, Suto A, Kagami S, Nakajima H, Kishimoto T, Iwamoto I et al (2008) Development of autoimmune hepatitis-like disease and production of autoantibodies to nuclear antigens in mice lacking B and T lymphocyte attenuator. Arthritis Rheum 58:2498–2510

    Article  PubMed  CAS  Google Scholar 

  36. Lin YC, Huang DY, Chu CL, Lin WW (2010) Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of Toll-like receptors-mediated JNK signaling pathway. Mol Immunol 47:1569–1578

    Article  PubMed  CAS  Google Scholar 

  37. Sanjuan MA, Rao N, Lai KT, Gu Y, Sun S, Fuchs A, Fung-Leung WP, Colonna M, Karlsson L (2006) CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J Cell Biol 172:1057–1068

    Article  PubMed  CAS  Google Scholar 

  38. Rauch PJ, Chudnovskiy A, Robbins CS, Weber GF, Etzrodt M, Hilgendorf I, Tiglao E, Figueiredo JL, Iwamoto Y, Theurl I et al. (2012) Innate response activator B cells protect against microbial sepsis. Science 335:597-601

    Google Scholar 

  39. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ (2008) CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol 9:176–185

    Article  PubMed  CAS  Google Scholar 

  40. Anumanthan A, Bensussan A, Boumsell L, Christ AD, Blumberg RS, Voss SD, Patel AT, Robertson MJ, Nadler LM, Freeman GJ (1998) Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol 161:2780–2790

    PubMed  CAS  Google Scholar 

  41. Maiza H, Leca G, Mansur IG, Schiavon V, Boumsell L, Bensussan A (1993) A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med 178:1121–1126

    Article  PubMed  CAS  Google Scholar 

  42. Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL, Ruben S, Murphy M, Eisenberg RJ, Cohen GH et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8:21–30

    Article  PubMed  CAS  Google Scholar 

  43. Weiner GJ (2009) CpG oligodeoxynucleotide-based therapy of lymphoid malignancies. Adv Drug Deliv Rev 61:263–267

    Article  PubMed  CAS  Google Scholar 

  44. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61:195–204

    Article  PubMed  CAS  Google Scholar 

  45. Cheung TC, Steinberg MW, Oborne LM, Macauley MG, Fukuyama S, Sanjo H, D’Souza C, Norris PS, Pfeffer K, Murphy KM et al (2009) Unconventional ligand activation of herpesvirus entry mediator signals cell survival. Proc Natl Acad Sci U S A 106:6244–6249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are obliged to the patients and healthy volunteers for their dedicated collaboration. We thank Dr. Daniel Isnardon and Sébastien Létard for discussion and technical insights. We thank Pfizer and Coley Pharmaceutical Group for pharmaceutical products. This work was supported by grants from Institut National de la Santé et de la Recherche Médicale, the Ludwig Institute for Cancer Research, and the Swiss Cancer League. ML Thibult has been supported by fellowships from Ministère de la Recherche et de l’Enseignement Supérieur and from La Ligue contre le Cancer.

Disclosure of conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Derré.

Additional information

Marie-Laure Thibult, Jean-Paul Rivals, Daniel Olive, and Laurent Derré contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thibult, ML., Rivals, JP., Mamessier, E. et al. CpG-ODN-induced sustained expression of BTLA mediating selective inhibition of human B cells. J Mol Med 91, 195–205 (2013). https://doi.org/10.1007/s00109-012-0943-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0943-7

Keywords

Navigation