Skip to main content
Log in

Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes

  • Invited Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pancreatic islet β-cell death occurs in type 1 and 2 diabetes mellitus, leading to absolute or relative insulin deficiency. β-cell death in type 1 diabetes is due predominantly to autoimmunity. In type 2 diabetes β-cell death occurs as the combined consequence of increased circulating glucose and saturated fatty acids together with adipocyte secreted factors and chronic activation of the innate immune system. In both diabetes types intra-islet inflammatory mediators seem to trigger a final common pathway leading to β-cell apoptosis. Therefore anti-inflammatory therapeutic approaches designed to block β-cell apoptosis could be a significant new development in type 1 and 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

DD :

Death domain

ECSIT :

Evolutionary conserved signaling intermediate in Toll/IL-1 pathways

ER :

Endoplasmic reticulum

ERK :

Extracellular signal-regulated kinase

FADD :

Fas-associated death domain

FasL :

Fas ligand

FFA :

Free fatty acid

FLIP :

Fas-associated death domain-like IL-1β converting enzyme inhibitory protein

IFN :

Interferon

IKK :

IκB kinase

IL :

Interleukin

IL-1R1 :

IL-1 type 1 receptor

IL-1Ra :

IL-1 receptor antagonist

iNOS :

Inducible nitric oxide synthase

IRAK :

IL-1R activated kinase

IRF :

Interferon regulatory factor

IκB :

Inhibitory κB protein

JAK :

Janus tyrosine kinases

JNK :

c-jun N-terminal kinase

MAP :

Mitogen-activated protein

MAPK :

Mitogen-activated protein kinase

MEKK :

MAPK/ERK kinase kinase

MORT :

Mediator of receptor induced toxicity

NF :

Nuclear transcription factor

NOD :

Nonobese diabetic

Pdx :

Pancreatic duodenal homeobox factor

PKC :

Protein kinase C

ROS :

Reactive oxygen species

SAPK :

Stress-activated protein kinases

SERCA :

Sarco-/endoplasmic reticulum Ca2+ ATPase

STAT :

Signal transducer and activator of transcription

TAK :

Transforming growth factor β-activated kinase

TNF :

Tumor necrosis factor

TRADD :

TNF receptor associated death domain

TRAF :

TNF receptor associated factor

References

  1. Anonymous (1997) Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20:1183–1197

    PubMed  Google Scholar 

  2. Bergholdt R, Heding P, Nielsen K, Nolsøe R, Sparre T, Størling J, et al (2002) Type 1 diabetes mellitus, an inflammatory disease of the islet. In: Eisenbarth GS (ed) Type 1 diabetes: molecular, cellular and clinical immunology.http://www.uchscedu/misc/diabetes/bdc.html

  3. Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633

    CAS  PubMed  Google Scholar 

  4. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death-the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    CAS  PubMed  Google Scholar 

  5. Winer S, Tsui H, Lau A, Song A, Li X, Cheung RK, Sampson A, Afifiyan F, Elford A, Jackowski G, Becker DJ, Santamaria P, Ohashi P, Dosch HM (2003) Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 9:198–205

    Article  CAS  PubMed  Google Scholar 

  6. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125

    Google Scholar 

  7. Cerasi E (1995) Insulin deficiency and insulin resistance in the pathogenesis of NIDDM: is a divorce possible? Diabetologia 38:992–997

    Google Scholar 

  8. Taylor SI, Accili D, Imai Y (1994) Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 43:735–740

    Google Scholar 

  9. Gerich JE (2000) Insulin resistance is not necessarily an essential component of type 2 diabetes. J Clin Endocrinol Metab 85:2113–2115

    CAS  PubMed  Google Scholar 

  10. Bonner-Weir S (2000) Islet growth and development in the adult. J Mol Endocrinol 24:297–302

    PubMed  Google Scholar 

  11. Finegood DT, Scaglia L, Bonner-Weir S (1995) Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44:249–256

    CAS  PubMed  Google Scholar 

  12. Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, Cooper GJ, Holman RR, Turner RC (1988) Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159

    CAS  PubMed  Google Scholar 

  13. Ritzel RA, Sultana C, Butler PC (2001) Preferential apoptosis of actively dividing cells induced by human islet amyloid polypeptide (abstract). Diabetes 50 [Suppl 2]:A32

  14. Gepts W, Lecompte PM (1981) The pancreatic islets in diabetes. Am J Med 70:105–115

    CAS  PubMed  Google Scholar 

  15. Guiot Y, Sempoux C, Moulin P, Rahier J (2001) No decrease of the beta-cell mass in type 2 diabetic patients. Diabetes 50 [Suppl 1]:S188

  16. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type-2 diabetes mellitus. Diabetes 52:102–110

    CAS  PubMed  Google Scholar 

  17. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45:85–96

    CAS  PubMed  Google Scholar 

  18. Mathis D, Vence L, Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414:792–798

    Article  CAS  PubMed  Google Scholar 

  19. Pietropaolo M, Barinas-Mitchell E, Pietropaolo SL, Kuller LH, Trucco M (2000) Evidence of islet cell autoimmunity in elderly patients with type 2 diabetes. Diabetes 49:32–38

    CAS  PubMed  Google Scholar 

  20. Rowley MJ, Mackay IR, Chen QY, Knowles WJ, Zimmet PZ (1992) Antibodies to glutamic acid decarboxylase discriminate major types of diabetes mellitus. Diabetes 41:548–551

    CAS  PubMed  Google Scholar 

  21. Wilkin TJ (2001) The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 44:914–922

    CAS  PubMed  Google Scholar 

  22. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced beta-cell production of interleukin-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    Article  CAS  PubMed  Google Scholar 

  23. Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A, Kaiser N, Donath MY (2001) Glucose induces beta-cell apoptosis via upregulation of the Fas-receptor in human islets. Diabetes 50:1683–1690

    CAS  PubMed  Google Scholar 

  24. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221–229

    CAS  PubMed  Google Scholar 

  25. Pociot F, Karlsen AE, Mandrup-Poulsen T (2002) Etiology and pathogenesis of insulin-dependent diabetes mellitus. In: Bertagna X, Fischer J, Groop L, Schoemaker J, Serio M, Wass J (eds) Endocrinology and metabolism. McGraw-Hill International, London, pp 593–606

  26. Dahlquist GG (1997) Viruses and other perinatal exposures as initiating events for beta-cell destruction. Ann Med 29:413–417

    CAS  PubMed  Google Scholar 

  27. The Canadian-European Randomized Control Trial Group. Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. Diabetes 37:1574–15821988

    PubMed  Google Scholar 

  28. Feutren G, Papoz L, Assan R, Vialettes B, Karsenty G, Vexiau P, Du RH, Rodier M, Sirmai J, Lallemand A (1986) Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet II:119–124

    Google Scholar 

  29. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, Gitelman SE, Harlan DM, Xu D, Zivin RA, Bluestone JA (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346:1692–1698

    Google Scholar 

  30. Anonymous (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346:1685–1691

    PubMed  Google Scholar 

  31. Shah SC, Malone JI, Simpson NE (1989) A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med 320:550–554

    CAS  PubMed  Google Scholar 

  32. Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    PubMed  Google Scholar 

  33. Mandrup-Poulsen T (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39:1005–1029

    CAS  PubMed  Google Scholar 

  34. Martin S, Wolf-Eichbaum D, Duinkerken G, Scherbaum WA, Kolb H, Noordzij JG, Roep BO (2001) Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med 345:1036–1040

    CAS  PubMed  Google Scholar 

  35. Nomikos IN, Prowse SJ, Carotenuto P, Lafferty KJ (1986) Combined treatment with nicotinamide and desferrioxamine prevents islet allograft destruction in NOD mice. Diabetes 35:1302–1304

    CAS  PubMed  Google Scholar 

  36. Weringer EJ, Like AA (1985) Immune attack on pancreatic islet transplants in the spontaneously diabetic BioBreeding/Worcester (BB/W) rat is not MHC restricted. J Immunol 134:2383–2386

    CAS  PubMed  Google Scholar 

  37. DiLorenzo TP, Graser RT, Ono T, Christianson GJ, Chapman HD, Roopenian DC, Nathenson SG, Serreze DV (1998) Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor alpha chain gene rearrangement. Proc Natl Acad Sci USA 95:12538–12543

    Article  CAS  PubMed  Google Scholar 

  38. Peterson JD, Pike B, McDuffie M, Haskins K (1994) Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice. J Immunol 153:2800–2806

    CAS  PubMed  Google Scholar 

  39. Yamada K, Takane-Gyotoku N, Yuan X, Ichikawa F, Inada C, Nonaka K (1996) Mouse islet cell lysis mediated by interleukin-1-induced Fas. Diabetologia 39:1306–1312

    Article  CAS  PubMed  Google Scholar 

  40. Dandona P, Aljada A (2002) A rational approach to pathogenesis and treatment of type 2 diabetes mellitus, insulin resistance, inflammation, and atherosclerosis. Am J Cardiol 90:27G–33G

    Article  CAS  PubMed  Google Scholar 

  41. Esch T, Stefano G (2002) Proinflammation: a common denominator or initiator of different pathophysiological disease processes. Med Sci Monit 8:HY1–HY9

    CAS  PubMed  Google Scholar 

  42. Ludewig B, Zinkernagel RM, Hengartner H (2002) Arterial inflammation and atherosclerosis. Trends Cardiovasc Med 12:154–159

    Article  CAS  PubMed  Google Scholar 

  43. Marette A (2002) Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab Care 5:377–383

    Article  CAS  PubMed  Google Scholar 

  44. Muller S, Martin S, Koenig W, Hanifi-Moghaddam P, Rathmann W, Haastert B, Giani G, Illig T, Thorand B, Kolb H (2002) Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia 45:805–812

    Article  Google Scholar 

  45. Syed MA, Barinas-Mitchell E, Pietropaolo SL, Zhang YJ, Henderson TS, Kelley DE, Korytkowski MT, Donahue RP, Tracy RP, Trucco M, Kuller LH, Pietropaolo M (2002) Is type 2 diabetes a chronic inflammatory/autoimmune disease? Diabetes Nutr Metab 15:68–83

    Google Scholar 

  46. Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20:87–93

    CAS  PubMed  Google Scholar 

  47. Elbein SC (2002) Perspective: the search for genes for type 2 diabetes in the post-genome era. Endocrinology 143:2012–2018

    CAS  PubMed  Google Scholar 

  48. Byrne MM, Sturis J, Clement K, Vionnet N, Pueyo ME, Stoffel M, Takeda J, Passa P, Cohen D, Bell GI (1994) Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest 93:1120–1130

    CAS  PubMed  Google Scholar 

  49. Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS (1996) Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes 45:1503–1510

    CAS  PubMed  Google Scholar 

  50. Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS (1996) Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes 45:1503–1510

    CAS  PubMed  Google Scholar 

  51. Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850

    Google Scholar 

  52. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Google Scholar 

  53. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    CAS  PubMed  Google Scholar 

  54. Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannet F, Golay A, Dayer JM (2002) IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 87:1184–1188

    Google Scholar 

  55. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

  56. Pickup JC, Mattock MB, Chusney GD, Burt D (1997) NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40:1286–1292

    Article  CAS  PubMed  Google Scholar 

  57. Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41:1241–1248

    Google Scholar 

  58. Pickup JC, Chusney GD, Mattock MB (2000) The innate immune response and type 2 diabetes: evidence that leptin is associated with a stress-related (acute-phase) reaction. Clin Endocrinol (Oxf) 52:107–112

    Google Scholar 

  59. Watts GF, Mandalia S, Brunt JN, Slavin BM, Coltart DJ, Lewis B (1993) Independent associations between plasma lipoprotein subfraction levels and the course of coronary artery disease in the St. Thomas' Atherosclerosis Regression Study (STARS). Metabolism 42:1461–1467

    CAS  PubMed  Google Scholar 

  60. Bastard JP, Pieroni L, Hainque B (2000) Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance. Diabetes Metab Res Rev 16:192–201

    CAS  PubMed  Google Scholar 

  61. Ganrot PO, Gydell K, Ekelund H (1967) Serum concentration of alpha-2-macroglobulin, haptoglobin and alpha-1-antitrypsin in diabetes mellitus. Acta Endocrinol (Copenh) 55:537–544

    Google Scholar 

  62. Jonsson A, Wales JK (1976) Blood glycoprotein levels in diabetes mellitus. Diabetologia 12:245–250

    CAS  PubMed  Google Scholar 

  63. McMillan DE (1989) Increased levels of acute-phase serum proteins in diabetes. Metabolism 38:1042–1046

    CAS  PubMed  Google Scholar 

  64. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR (1993) Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 42:359–362

    CAS  PubMed  Google Scholar 

  65. Zimmet PZ, Tuomi T, Mackay IR, Rowley MJ, Knowles W, Cohen M, Lang DA (1994) Latent autoimmune diabetes mellitus in adults (LADA): the role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med 11:299–303

    CAS  PubMed  Google Scholar 

  66. Donath MY, Gross DJ, Cerasi E, Kaiser N (1999) Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48:738–744

    CAS  PubMed  Google Scholar 

  67. Bellone M, Iezzi G, Rovere P, Galati G, Ronchetti A, Protti MP, Davoust J, Rugarli C, Manfredi AA (1997) Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol 159:5391–5399

    CAS  PubMed  Google Scholar 

  68. Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT (2000) Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 49:1–7

    Google Scholar 

  69. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53

    Google Scholar 

  70. Islam MS, Sjoholm A, Emilsson V (2000) Fetal pancreatic islets express functional leptin receptors and leptin stimulates proliferation of fetal islet cells. Int J Obes Relat Metab Disord 24:1246–1253

    Article  CAS  PubMed  Google Scholar 

  71. Okuya S, Tanabe K, Tanizawa Y, Oka Y (2001) Leptin increases the viability of isolated rat pancreatic islets by suppressing apoptosis. Endocrinology 142:4827–4830

    CAS  PubMed  Google Scholar 

  72. Shimabukuro M, Wang MY, Zhou YT, Newgard CB, Unger RH (1998) Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression. Proc Natl Acad Sci U S A 95:9558–9561

    Article  CAS  PubMed  Google Scholar 

  73. Tanabe K, Okuya S, Tanizawa Y, Matsutani A, Oka Y (1997) Leptin induces proliferation of pancreatic beta cell line MIN6 through activation of mitogen-activated protein kinase. Biochem Biophys Res Commun 241:765–768

    Article  CAS  PubMed  Google Scholar 

  74. Mandrup-Poulsen T (2001) beta-cell apoptosis: stimuli and signaling. Diabetes 50 [Suppl 1]:S58–S63

  75. Mohamed-Ali V, Flower L, Sethi J, Hotamisligil G, Gray R, Humphries SE, York DA, Pinkney J (2001) beta-Adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies. J Clin Endocrinol Metab 86:5864–5869

    CAS  PubMed  Google Scholar 

  76. Eizirik DL, Sandler S, Welsh N, Cetkovic-Cvrlje M, Nieman A, Geller DA, Pipeleers DG, Bendtzen K, Hellerstrom C (1994) Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J Clin Invest 93:1968–1974

    CAS  PubMed  Google Scholar 

  77. Wadt KA, Larsen CM, Andersen HU, Nielsen K, Karlsen AE, Mandrup-Poulsen T (1998) Ciliary neurotrophic factor potentiates the beta-cell inhibitory effect of IL-1beta in rat pancreatic islets associated with increased nitric oxide synthesis and increased expression of inducible nitric oxide synthase. Diabetes 47:1602–1608

    CAS  PubMed  Google Scholar 

  78. LeRoith D (2002) Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 113 [Suppl 6A]:3S–11S

  79. McGarry JD, Dobbins RL (1999) Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42:128–138

    Article  CAS  PubMed  Google Scholar 

  80. Randle PJ, Garland PB, Newsholme EA, Hales CN (1965) The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci 131:324–333

    CAS  PubMed  Google Scholar 

  81. Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:863–870

    CAS  PubMed  Google Scholar 

  82. Vries JE de, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, van der Vusse GJ, van Bilsen M (1997) Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 38:1384–1394

    PubMed  Google Scholar 

  83. Hardy S, Langelier Y, Prentki M (2000) Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res 60:6353–6358

    CAS  PubMed  Google Scholar 

  84. Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, Spinas GA, Donath MY (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50:2105–2113

    CAS  PubMed  Google Scholar 

  85. Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY (2001) Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 50:69–76

    CAS  PubMed  Google Scholar 

  86. Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52:726–733

    CAS  PubMed  Google Scholar 

  87. Shimabukuro M, Zhou YT, Levi M, Unger RH (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A 95:2498–2502

    Article  CAS  PubMed  Google Scholar 

  88. Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, Usellini L, Nano R, Bonini P, Bertuzzi F, Marlier LN, Davalli AM, Carandente O, Pontiroli AE, Melino G, Marchetti P, Lauro R, Sesti G, Folli F (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50:1290–1301

    CAS  PubMed  Google Scholar 

  89. Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S, Berggren PO (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 273:33501–33507

    CAS  PubMed  Google Scholar 

  90. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1–8

    Google Scholar 

  91. Hunt JV, Dean RT, Wolff SP (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205–212

    CAS  PubMed  Google Scholar 

  92. Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Kawasaki Y, Suzuki K, Nakamura M, Tatsumi H, Yamasaki Y, Taniguchi N (1996) Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem J 320:855–863

    CAS  PubMed  Google Scholar 

  93. Laybutt DR, Kaneto H, Hasenkamp W, Grey S, Jonas JC, Sgroi DC, Groff A, Ferran C, Bonner-Weir S, Sharma A, Weir GC (2002) Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to beta-cell survival during chronic hyperglycemia. Diabetes 51:413–423

    CAS  PubMed  Google Scholar 

  94. Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y (1997) Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 99:144–150

    CAS  PubMed  Google Scholar 

  95. Hoorens A, Van dC, Kloppel G, Pipeleers D (1996) Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest 98:1568–1574

    CAS  PubMed  Google Scholar 

  96. Maedler K, Fontana A, Ris F, Sergeev P, Toso C, Oberholzer J, Lehmann R, Bachmann F, Tasinato A, Spinas GA, Halban PA, Donath MY (2002) FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA 99:8236–8241

    Article  CAS  PubMed  Google Scholar 

  97. Spinas GA, Mandrup-Poulsen T, Molvig J, Baek L, Bendtzen K, Dinarello CA, Nerup J (1986) Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta Endocrinol (Copenh) 113:551–558

    Google Scholar 

  98. Heitmeier MR, Arnush M, Scarim AL, Corbett JA (2001) Pancreatic β-cell damage mediated by beta-cell production of IL-1: a novel mechanism for virus-induced diabetes. J Biol Chem 276:11151–11158

    Article  CAS  PubMed  Google Scholar 

  99. Giannoukakis N, Rudert WA, Ghivizzani SC, Gambotto A, Ricordi C, Trucco M, Robbins PD (1999) Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 48:1730–1736

    CAS  PubMed  Google Scholar 

  100. Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG (1998) Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. Diabetes 47:727–732

    CAS  PubMed  Google Scholar 

  101. Rabinovitch A, Sumoski W, Rajotte RV, Warnock GL (1990) Cytotoxic effects of cytokines on human pancreatic islet cells in monolayer culture. J Clin Endocrinol Metab 71:152–156

    CAS  PubMed  Google Scholar 

  102. Stassi G, De Maria R, Trucco G, Rudert W, Testi R, Galluzzo A, Giordano C, Trucco M (1997) Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 186:1193–1200

    Article  CAS  PubMed  Google Scholar 

  103. Dunne A, O'Neill LA (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE re3

  104. Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, Ghosh S (1999) ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 13:2059–2071

    CAS  PubMed  Google Scholar 

  105. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256

    Article  CAS  PubMed  Google Scholar 

  106. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272:1179–1182

    CAS  PubMed  Google Scholar 

  107. Carpenter L, Cordery D, Biden TJ (2001) Protein kinase Cdelta activation by interleukin-1beta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-cells. J Biol Chem 276:5368–5374

    Article  CAS  PubMed  Google Scholar 

  108. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N (1996) The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39:875–890

    PubMed  Google Scholar 

  109. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, Orntoft T, Eizirik DL (2001) A comprehensive analysis of cytokine-induced and NF-kB dependent genes in primary rat pancreatic β-cells. J Biol Chem 276:48879–48886

    Article  CAS  PubMed  Google Scholar 

  110. Flodstrom M, Welsh N, Eizirik DL (1996) Cytokines activate the nuclear factor kappa B (NF-kappa B) and induce nitric oxide production in human pancreatic islets. FEBS Lett 385:4–6

    Article  CAS  PubMed  Google Scholar 

  111. Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML (1995) Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology 136:4790–4795

    CAS  PubMed  Google Scholar 

  112. Saldeen J (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141:2003–2010

    CAS  PubMed  Google Scholar 

  113. Chen MC, Proost P, Gysemans C, Mathieu C, Eizirik DL (2001) Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 beta-exposed human and rat islet cells. Diabetologia 44:325–332

    Article  CAS  PubMed  Google Scholar 

  114. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    Article  CAS  PubMed  Google Scholar 

  115. Tau G, Rothman P (1999) Biologic functions of the IFN-gamma receptors. Allergy 54:1233–1251

    Article  CAS  PubMed  Google Scholar 

  116. Karlsen AE, Ronn SG, Lindberg K, Johannesen J, Galsgaard ED, Pociot F, Nielsen JH, Mandrup-Poulsen T, Nerup J, Billestrup N (2001) Suppressor of cytokine signaling 3 (SOCS-3) protects beta-cells against interleukin-1beta-and interferon-gamma-mediated toxicity. Proc Natl Acad Sci USA 98:12191–12196

    Article  CAS  PubMed  Google Scholar 

  117. Heitmeier MR, Scarim AL, Corbett JA (1999) Double-stranded RNA inhibits beta-cell function and induces islet damage by stimulating beta-cell production of nitric oxide. J Biol Chem 274:12531–12536

    Article  CAS  PubMed  Google Scholar 

  118. Flodstrom M, Eizirik DL (1997) Interferon-gamma-induced interferon regulatory factor-1 (IRF-1) expression in rodent and human islet cells precedes nitric oxide production. Endocrinology 138:2747–2753

    CAS  PubMed  Google Scholar 

  119. Karlsen AE, Pavlovic D, Nielsen K, Jensen J, Andersen HU, Pociot F, Mandrup-Poulsen T, Eizirik DL, Nerup J (2000) Interferon-gamma induces interleukin-1 converting enzyme expression in pancreatic islets by an interferon regulatory factor-1-dependent mechanism. J Clin Endocrinol Metab 85:830–836

    CAS  PubMed  Google Scholar 

  120. Andersen NA, Larsen CM, Mandrup-Poulsen T (2000) TNFalpha and IFNgamma potentiate IL-1beta induced mitogen activated protein kinase activity in rat pancreatic islets of Langerhans. Diabetologia 43:1389–1396

    Article  CAS  PubMed  Google Scholar 

  121. Rath PC, Aggarwal BB (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19:350–364

    Article  CAS  PubMed  Google Scholar 

  122. Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J (1987) Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity. J Immunol 139:4077–4082

    CAS  PubMed  Google Scholar 

  123. Pukel C, Baquerizo H, Rabinovitch A (1988) Destruction of rat islet cell monolayers by cytokines. Synergistic interactions of interferon-gamma, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes 37:133–136

    CAS  PubMed  Google Scholar 

  124. Bernal-Mizrachi E, Wen W, Shornick M, Permutt MA (2002) Activation of nuclear factor-kappaB by depolarization and Ca (2+) influx in MIN6 insulinoma cells. Diabetes 51 [Suppl 3]:S484–S488

  125. Larsen CM, Wadt KA, Juhl LF, Andersen HU, Karlsen AE, Su MS, Seedorf K, Shapiro L, Dinarello CA, Mandrup-Poulsen T (1998) Interleukin-1beta-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Biol Chem 273:15294–15300

    Article  CAS  PubMed  Google Scholar 

  126. Welsh N (1996) Interleukin-1 beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F. J Biol Chem 271:8307–8312

    Article  CAS  PubMed  Google Scholar 

  127. Major CD, Wolf BA (2001) Interleukin-1beta stimulation of c-Jun NH (2)-terminal kinase activity in insulin-secreting cells: evidence for cytoplasmic restriction. Diabetes 50:2721–2728

    CAS  PubMed  Google Scholar 

  128. Pavlovic D, Andersen NA, Mandrup-Poulsen T, Eizirik DL (2000) Activation of extracellular signal-regulated kinase (ERK)1/2 contributes to cytokine-induced apoptosis in purified rat pancreatic beta-cells. Eur Cytokine Netw 11:267–274

    CAS  PubMed  Google Scholar 

  129. Ammendrup A, Maillard A, Nielsen K, Aabenhus AN, Serup P, Dragsbaek MO, Mandrup-Poulsen T, Bonny C (2000) The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells. Diabetes 49:1468–1476

    CAS  PubMed  Google Scholar 

  130. Bonny C, Oberson A, Steinmann M, Schorderet DF, Nicod P, Waeber G (2000) IB1 reduces cytokine-induced apoptosis of insulin-secreting cells. J Biol Chem 275:16466–16472

    Article  CAS  PubMed  Google Scholar 

  131. Bonny C, Oberson A, Negri S, Sauser C, Schorderet DF (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 50:77–82

    CAS  PubMed  Google Scholar 

  132. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 277:30010–30018

    Article  CAS  PubMed  Google Scholar 

  133. Nielsen K, Karlsen AE, Deckert M, Madsen OD, Serup P, Mandrup-Poulsen T, Nerup J (1999) Beta-cell maturation leads to in vitro sensitivity to cytotoxins. Diabetes 48:2324–2332

    CAS  PubMed  Google Scholar 

  134. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  PubMed  Google Scholar 

  135. Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M, Eizirik DL (2001) Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes 50:2219–2224

    PubMed  Google Scholar 

  136. Giannoukakis N, Rudert WA, Trucco M, Robbins PD (2000) Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J Biol Chem 275:36509–36513

    Article  CAS  PubMed  Google Scholar 

  137. Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL (2001) Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. Diabetes 50:909–920

    CAS  PubMed  Google Scholar 

  138. Carpenter L, Cordery D, Biden TJ (2002) Inhibition of protein kinase C delta protects rat INS-1 cells against interleukin-1beta and streptozotocin-induced apoptosis. Diabetes 51:317–324

    CAS  PubMed  Google Scholar 

  139. Juntti-Berggren L, Larsson O, Rorsman P, Ammala C, Bokvist K, Wahlander K, Nicotera P, Dypbukt J, Orrenius S, Hallberg A, Berggren PO (1993) Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science 261:86–90

    CAS  PubMed  Google Scholar 

  140. Borg LA, Eizirik DL (1990) Short-term exposure of rat pancreatic islets to human interleukin-1 beta increases cellular uptake of calcium. Immunol Lett 26:253–258

    Article  CAS  PubMed  Google Scholar 

  141. Zaitsev SV, Appelskog IB, Kapelioukh IL, Yang SN, Kohler M, Efendic S, Berggren PO (2001) Imidazoline compounds protect against interleukin 1beta-induced beta-cell apoptosis. Diabetes 50 [Suppl 1]:S70–S76

  142. Wang L, Bhattacharjee A, Zuo Z, Hu F, Honkanen RE, Berggren PO, Li M (1999) A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology 140:1200–1204

    CAS  PubMed  Google Scholar 

  143. Wang L, Bhattacharjee A, Fu J, Li M (1996) Abnormally expressed low-voltage-activated calcium channels in beta-cells from NOD mice and a related clonal cell line. Diabetes 45:1678–1683

    CAS  PubMed  Google Scholar 

  144. Rabinovitch A, Suarez-Pinzon WL, Sooy K, Strynadka K, Christakos S (2001) Expression of calbindin-D (28 k) in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology 142:3649–3655

    CAS  PubMed  Google Scholar 

  145. Zhou YP, Teng D, Dralyuk F, Ostrega D, Roe MW, Philipson L, Polonsky KS (1998) Apoptosis in insulin-secreting cells. Evidence for the role of intracellular Ca2+ stores and arachidonic acid metabolism. J Clin Invest 101:1623–1632

    CAS  PubMed  Google Scholar 

  146. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  CAS  PubMed  Google Scholar 

  147. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335–345

    Article  CAS  PubMed  Google Scholar 

  148. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    CAS  PubMed  Google Scholar 

  149. Suarez-Pinzon W, Sorensen O, Bleackley RC, Elliott JF, Rajotte RV, Rabinovitch A (1999) Beta-cell destruction in NOD mice correlates with Fas (CD95) expression on beta-cells and proinflammatory cytokine expression in islets. Diabetes 48:21–28

    CAS  PubMed  Google Scholar 

  150. Stassi G, Todaro M, Richiusa P, Giordano M, Mattina A, Sbriglia MS, Lo MA, Buscemi G, Galluzzo A, Giordano C (1995) Expression of apoptosis-inducing CD95 (Fas/Apo-1) on human beta-cells sorted by flow-cytometry and cultured in vitro. Transplant Proc 27:3271–3275

    CAS  PubMed  Google Scholar 

  151. Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (2000) The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 10:640–648

    Article  CAS  PubMed  Google Scholar 

  152. Newton K, Harris AW, Bath ML, Smith KG, Strasser A (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 17:706–718

    Article  CAS  PubMed  Google Scholar 

  153. Ebstein, W. Zur Therapie des Diabetes Mellitus, insbesondere über die Anwendung des Salicylsauren Natron bei demselben. Berliner Klin Wochenschr 24:337–340:1876

  154. Shoelson S (2002) Invited comment on W. Ebstein: on the therapy of diabetes mellitus, in particular on the application of sodium salicylate. J Mol Med 80:618–619

    Article  PubMed  Google Scholar 

  155. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959

    Google Scholar 

  156. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetes 52:812–817

    CAS  PubMed  Google Scholar 

  157. Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446

    Article  CAS  PubMed  Google Scholar 

  158. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikebeta. Science 293:1673–1677

    CAS  PubMed  Google Scholar 

  159. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto AM Jr (2001) Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 344:1959–1965

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Juvenile Diabetes Research Foundation International Grant # 4-2002-457, the Danish Diabetes Association and Novo Nordisk (J.S., T.M.P.) and by the Swiss National Science Foundation Grants #3200-067049.01 and PP00B-68874/1 and by the Max Cloetta Foundation (M.Y.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Y. Donath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donath, M.Y., Størling, J., Maedler, K. et al. Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81, 455–470 (2003). https://doi.org/10.1007/s00109-003-0450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0450-y

Keywords

Navigation