Skip to main content
Log in

A cytological study ofCrepis fuliginosa, C. Neglecta, and theirF 1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number

  • Published:
Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Anderson, E. (1937). Cytology in its relation to taxonomy.Bot. Rev.3, 335–50.

    Article  Google Scholar 

  • Anderson, E. &Sax, K. (1935). Chromosome numbers in the Hamamelidaceae and their phylogenetic significance.J. Arnold Arbor.16, 210–15.

    Google Scholar 

  • Anderson, E. G. (1935). Chromosome interchanges in maize.Genetics,20, 70–83.

    PubMed  CAS  Google Scholar 

  • Avdulov, N. P. (1931). Karyo-systematische Untersuchungen der Familie Gramineen.Bull. Appl. Bot. Suppl.44, 1–438.

    Google Scholar 

  • Avery, P. (1930). Cytological studies of five interspecific hybrids ofCrepis leontodontoides.Univ. Calif. Publ. Agric. Sci.6, 135–67.

    Google Scholar 

  • Babcock, E. B. (1934). Basic chromosome numbers in plants with special reference to the Compositae.New Phytol.33, 386–8.

    Article  Google Scholar 

  • Babcock, E. B. (1936). The origin ofCrepis and related genera, with particular reference to distribution and chromosome relationships.Univ. Calif. Publ. Bot., Essays in Geobotany in Honor of William Albert Setchell, pp. 9–53.

  • Babcock, E. B. (1942). Systematics, cytogenetics and evolution inCrepis.Bot. Rev.8, 139–90.

    Article  Google Scholar 

  • Babcock, E. B. &Cameron, D. R. (1934). Chromosomes and phylogeny inCrepis. II. The relationships of one hundred eight species.Univ. Calif. Publ. Agric. Sci.6, 287–324.

    Google Scholar 

  • Babcock, E. B. &Clausen, J. (1929). Meiosis in two species and three hybrids ofCrepis and its bearing on taxonomic relationships.Univ. Calif. Publ. Agric. Sci.2, 401–32.

    Google Scholar 

  • Babcock, E. B. &Emsweller, S. L. (1936). Meiosis in certain interspecific hybrids inCrepis and its bearing on taxonomic relationship.Univ. Calif. Publ. Agric. Sci.6, 325–68.

    Google Scholar 

  • Babcock, E. B.,Stebbins, G. L.Jr. &Jenkins, J. A. (1937). Chromosomes and phylogeny in some genera of the Crepidinae.Cytologia, Fujii Jubilee Vol. pp. 188–210.

  • Bauer, H. (1936). Structure and arrangement of salivary gland chromosomes inDrosophila species.Proc. Nat. Acad. Sci., Wash.,22, 216–22.

    Article  CAS  Google Scholar 

  • Beal, J. M. (1939). Cytological studies in relation to the classification of the genusCalochortus.Bot. Gaz.100, 528–47.

    Article  Google Scholar 

  • Bergner, A. D. (1941). Chromosome association inDatura. Proc. 7th Int. Genet. Congr. 1939, pp. 63–4.

  • Burnham, C. R. (1932). An interchange in maize giving low sterility and chain configurations.Proc. Nat. Acad. Sci., Wash.,18, 434–40.

    Article  CAS  Google Scholar 

  • Catcheside, D. G. (1932). The chromosomes of a new haploidOenothera.Cytologia, Tokyo,4, 68–113.

    Google Scholar 

  • Catcheside, D. G. (1935). X-ray treatment ofOenothera chromosomes.Genetica,17, 313–41.

    Article  Google Scholar 

  • Catcheside, D. G. (1938a). The bearing of the frequencies of X-ray induced interchanges in maize upon the mechanism of their induction.J. Genet.36, 321–8.

    Article  Google Scholar 

  • Catcheside, D. G. (1938b). The effect of X-ray dosage upon the frequency of induced structural changes in the chromosomes ofDrosophila melanogaster.J. Genet.36, 307–20.

    Article  Google Scholar 

  • Clarke, A. E. &Anderson, E. G. (1935). A chromosomal interchange in maize without ring formation.Amer. J. Bot.22, 711–16.

    Article  Google Scholar 

  • Collins, J. L. &Mann, M. C. (1923). Interspecific hybrids inCrepis. II. A preliminary report on the results of hybridizingCrepis setosa withC. capillaris andC. biennis.Genetics,8, 212–32.

    PubMed  CAS  Google Scholar 

  • Collins, J. L., Hollingshead, L. &Avery, P. (1929). Interspecific hybrids inCrepis. III. Constant fertile forms containing chromosomes derived from two species.Genetics,14, 305–20.

    PubMed  CAS  Google Scholar 

  • Coonen, L. P. (1939). The chromosomes ofRanunculus.Amer. J. Bot.26, 49–58.

    Article  Google Scholar 

  • Dark, S. O. S. (1936). Meiosis in diploid and tetraploidPaeonia species.J. Genet.32, 353–72.

    Article  Google Scholar 

  • Darlington, C. D. (1929). Chromosome behaviour and structural hybridity in the Tradescantiae.J. Genet.21, 207–86.

    Google Scholar 

  • Darlington, C. D. (1930). Studies inFritillaria. III. Chiasma formation and chromosome pairing inFritillaria imperialis.Cytologia, Tokyo,2, 37–55.

    Google Scholar 

  • Darlington, C. D. (1931). The cytological theory of inheritance inOenothera.J. Genet.24, 405–74.

    Google Scholar 

  • Darlington, C. D. (1936). Crossing-over and its mechanical relationships inChorthippus andStauroderus.J. Genet.33, 465–98.

    Google Scholar 

  • Darlington, C. D. (1937a). Chromosome behaviour and structural hybridity in the Tradescantiae, II.J. Genet.35, 259–80.

    Article  Google Scholar 

  • Darlington, C. D. (1937b).Recent Advances in Cytology. 671 pp. Philadelphia: Blakiston, Son and Co.

    Google Scholar 

  • Darlington, C. D. (1939).The Evolution of Genetic Systems. 149 pp. Camb. Univ. Press.

  • Darlington, C. D. (1940). The prime variables of meiosis.Biol. Rev.15, 307–22.

    Article  Google Scholar 

  • Darlington, C. D. &Dark, S. O. S. (1932). The origin and behaviour of chiasmata. II.Stenobothrus parallelus.Cytologia, Tokyo,3, 169–85.

    Google Scholar 

  • Darlington, C. D. &Gairdner, A. E. (1937). The variation system inCampanula persicifolia.J. Genet.35, 97–129.

    Article  Google Scholar 

  • Darlington, C. D. &La Cour, L. (1940). Nucleic acid starvation of chromosomes inTrillium.J. Genet.40, 185–213.

    Article  Google Scholar 

  • Darlington, C. D. &La Cour, L. (1941). The detection of inert genes.J. Hered.32, 115–21.

    Google Scholar 

  • Darlington, C. D. &Upcott, M. B. (1941). The activity of inert chromosomes inZea Mays.J. Genet.41, 275–96.

    Google Scholar 

  • Dubinin, N. P. (1934). Experimental reduction in the number of chromosome pairs inDrosophila melanogaster.Biol. Zh.3, 719–36.

    Google Scholar 

  • Dubinin, N. P. (1936). Experimental alteration of the number of chromosome pairs inDrosophila melanogaster.Biol. Zh.5, 833–49.

    Google Scholar 

  • Emsweller, S. L. &Jones, H. A. (1938). Crossing over, fragmentation and formation of new chromosomes in anAllium species hybrid.Bot. Gaz.99, 729–73.

    Article  Google Scholar 

  • Flory, W. S. Jr. (1934). A cytological study in the genusPhlox.Cytologia, Tokyo,6, 1–18.

    Google Scholar 

  • Flory, W. S. Jr. (1936). Chromosome numbers and phylogeny in the Gymnosperms.J. Arnold Arbor.17, 83–9.

    Google Scholar 

  • Frankel, O. H. (1937). Inversions inFritillaria.J. Genet.34, 447–62.

    Article  Google Scholar 

  • Frankel, O. H. (1940). The causal sequence of meiosis. I. Chiasma formation and the order of pairing inFritillaria.J. Genet.41, 9–34.

    Google Scholar 

  • Frolova, S. L. (1938). The development of the inert regions of the salivary gland chromosomes inDrosophila.Nature, Lond.,142, 357–8.

    Article  Google Scholar 

  • Fujii, S. (1938). An evidence for the presence of inert regions in the autosomes ofDrosophila virilis.Cytologia, Tokyo,9, 177–84.

    Google Scholar 

  • Geitler, L. (1933). Das Verhalten der Chromozentren vonAgapanthus während der Mitose.Öst. Bot. Z.82, 277–82.

    Article  Google Scholar 

  • Geitler, L. (1938a). Über das Wachstum von Chromozentrenkeimen und zweierlei Heterochromatin bei Blutenpflanzen.Z. Zellforsch.28, 133–53.

    Article  Google Scholar 

  • Geitler, L. (1938b). Weitere cytogenetische Untersuchungen an natürlichen Populationen vonParis quadrifolia.Z. indukt. Abstamm.- u. VerebLehre,75, 161–90.

    Article  Google Scholar 

  • Gerassimova, H. (1939). Chromosome alterations as a factor of divergence of forms. I. New experimentally produced strains ofC. tectorum which are physiologically isolated from the original forms owing to reciprocal translocation.C.R. Acad. Sci. U.R.S.S.25, 148–54.

    Google Scholar 

  • Gerassimova, H. (1940). A translocation between theB- andD-chromosomes and the trisomic effects of theB-chromosome inCrepis tectorum L.Bull. Acad. Sci. U.R.S.S.1, 31–44.

    Google Scholar 

  • Heitz, E. (1929). Heterochromatin, Chromozentren, Chromomeren.Ber. dtsch. bot. Ges.47, 274–83.

    Google Scholar 

  • Heitz, E. (1932). Die Herkunft der Chromozentren.Planta,18, 571–639.

    Article  Google Scholar 

  • Heitz, E. (1933a). Die somatische Heteropyknose beiDrosophila melanogaster und ihre genetische Bedeutung.Z. Zellforsch.20, 237–87.

    Article  Google Scholar 

  • Heitz, E. (1933b). Über totale und partielle somatische Heteropyknose, sowie strukturelle Geschlechts-chromosomen beiDrosophila funebris.Z. Zellforsch.19, 720–42.

    Article  Google Scholar 

  • Heitz, E. (1935). Chromosomenstruktur und Gene.Z. indukt. Abstamin.-u. VererbLehre,70, 402–47.

    Article  Google Scholar 

  • Hollingshead, L. (1930). Cytological investigations of hybrids and hybrid derivatives ofCrepis capillaris andCrepis tectorum.Univ. Calif. Publ. Agric. Sci.6, 55–94.

    Google Scholar 

  • Jaretsky, R. (1928a). Histologische und karyologische Studien an Polygonaceen.Jb. wiss. Bot.69, 357–490.

    Google Scholar 

  • Jaretsky, R. (1928b). Untersuchungen über Chromosomen und Phylogenie bei einigen Cruciferen.Jb. wiss. Bot.68, 1–45.

    Google Scholar 

  • Jaretsky, R. (1932). Beziehungen zwischen Chromosomenzahl und Systematik bei den Cruciferen.Jb. wiss. Bot.76, 485–527.

    Google Scholar 

  • Jenkins, J. A. (1939). The cytogenetic relationships of four species ofCrepis.Univ. Calif. Publ. Agric. Sci.6, 369–400.

    Google Scholar 

  • Kaufmann, B. P. (1937). Morphology of the chromosomes ofDrosophila ananassae. Cytologia, Fujii Jubilee Vol. pp. 1043–55.

  • Kikkawa, H. (1937). The inert chromosomes ofDrosophila ananassae. Cytologia, Fujii Jubilee Vol. pp. 125–8.

  • Kikkawa, H. (1938). Studies on the genetics and cytology ofDrosophila ananassae.Genetica,20, 458–516.

    Article  Google Scholar 

  • Koller, P. C. (1932). Further studies inTradescantia virginiana var.humilis andRhoeo discolor.J. Genet.26, 81–96.

    Article  Google Scholar 

  • Koller, P. C. (1935). Cytological studies inCrepis aurea andC. rubra.Cytologia, Tokyo,6, 281–8.

    Google Scholar 

  • Korjukaev, S. I. (1940). On the nature of translocations inCrepis capillaris Wallr.C.R. Acad. Sci. U.R.S.S.26, 400–2.

    Google Scholar 

  • Krause, O. (1931). Zytologische Studien bei den Urticales unter besonderer Berücksichtigung der GattungDorstenia.Planta,13, 29–84.

    Article  Google Scholar 

  • Levitsky, G. A. (1940). A cytological study of the progency of X-rayedCrepis capillaris Wallr.Cytologia, Tokyo,11, 1–29.

    Google Scholar 

  • Levitsky, G. A. &Sizova, M. (1935). Further studies on regularities in chromosome transformations inCrepis capillaris induced by X-rays.C.R. Acad. Sci. U.R.S.S.4, 70–1.

    Google Scholar 

  • McClintock, B. (1931). Cytological observations of deficiencies involving known genes, translocations and an inversion inZea Mays. Res. Bull. Mo. Agric. Exp. Sta. no. 163.

  • McClintock, B. (1933). The association of non-homologous parts of chromosomes in the mid-prophase of meiosis inZea Mays.Z. Zellforsch.19, 191–237.

    Article  Google Scholar 

  • McClintock, B. (1938). The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases.Res. Bull. Mo. Agric. Exp. Sta. no. 290.

  • McCullagh, D. (1934). Chromosome and chromosome morphology in Plantaginaceae. I.Genetica,16, 1–44.

    Article  Google Scholar 

  • Makino, S. (1940). On the chromocentre observed through the mitotic cycle of somatic cells inDrosophila virilis.Cytologia, Tokyo,10, 283–93.

    Google Scholar 

  • Manton, I. (1932). Introduction to the cytology of the Cruciferae.Ann. Bot., Lond.,46, 509–56.

    Google Scholar 

  • Mather, K. (1935). Chromosome behaviour in a triploid wheat hybrid.Z. Zellforsch.23, 117–38.

    Article  Google Scholar 

  • Muller, H. J. (1940). An analysis of the process of structural change in chromosomes ofDrosophila.J. Genet.40, 1–66.

    Article  Google Scholar 

  • Muller, H. J. &Painter, T. S. (1932). The differentiation of the sex chromosomes ofDrosophila into genetically active and inert regions.Z. indukt. Abstamm.-u. VerebLehre,62, 316–65.

    Article  Google Scholar 

  • Muller, H. J., Raffel, D., Gershenson, S. M. &Prokofyeva-Belgovskaya, A. A. (1937). A further analysis of loci in the so-called inert region of theX-chromosome ofDrosophila.Genetics,22, 87–93.

    PubMed  CAS  Google Scholar 

  • Müntzing, A. (1934). Chromosome fragmentation in aCrepis hybrid.Hereditas, Lund,19, 284–302.

    Article  Google Scholar 

  • Navashin, M. (1925). Morphologische Kernstudien derCrepis-Arten in Bezug auf die Artbildung.Z. Zellforsch.6, 195–233.

    Article  Google Scholar 

  • Navashin, M. (1928). ‘Amphiplastie’—eine neue karyologische Erscheinung.Z. indukt. Abstamm.- u. VererbLehre, Suppl. 2, pp. 1148–52.

  • Navashin, M. (1932). The dislocation hypothesis of evolution of chromosome numbers.Z. indukt. Abstamm.- u. VererbLehre,63, 224–31.

    Article  Google Scholar 

  • Navashin, M. (1934). Chromosome alterations caused by hybridization and their bearing upon certain general genetic problems.Cytologia, Tokyo,5, 169–203.

    Google Scholar 

  • Phillips, H. M. (1938). Karyology and the phyletic relationships of the Plumbaginaceae.Chron. Bot.4, 385–6.

    Google Scholar 

  • Pierce, W. P. (1939). Cytology of the genusLespedeza.Amer. J. Bot.26, 736–44.

    Article  Google Scholar 

  • Poole, C. F. (1931). The interspecific hybridCrepis rubra × C. foetida and some of its derivatives. I.Univ. Calif. Publ. Agric. Sci.6, 169–200.

    Google Scholar 

  • Poole, C. F. (1932). The interspecific hybridCrepis rubra × C. foetida and some of its derivatives. II. Two selfed generations from an amphidiploid hybrid.Univ. Calif. Publ. Agric. Sci.6, 231–55.

    Google Scholar 

  • Ribbands, C. R. (1937). The consequences of structural hybridity at meiosis inLilium × testaceum J. Genet. 35, 1–24.

    Article  Google Scholar 

  • Richardson, M. M. (1935a). Meiosis inCrepis. I. Pachytene association and chiasma behaviour inCrepis capillaris (L.) Wallr. andC. tectorum L.J. Genet.31, 101–17.

    Article  Google Scholar 

  • Richardson, M. M. (1935b). Meiosis inCrepis. II. Failure of pairing inCrepis capillaris (L.) Wallr.J. Genet.31, 119–43.

    Article  Google Scholar 

  • Richardson, M. M. (1936). Structural hybridity inLilium Martagon Album × L. Hansonii.J. Genet.32, 411–50.

    Article  Google Scholar 

  • Sansome, E. R. (1932). Segmental interchange inPisum sativum.Cytologia, Tokyo,3, 200–19.

    Google Scholar 

  • Satô, D. (1938). Karyotype alterations and phylogeny. IV. Karyotypes in Amaryllidaceae with special reference to the SAT-chromosomes.Cytologia, Tokyo,9, 203–42.

    Google Scholar 

  • Sax, K. (1937). Chromosome inversions inPaeonia suffruticosa. Cytologia, Fugii Jubilee Vol. pp. 108–14.

  • Sax, K. (1938). Chromosome aberrations induced by X-rays.Genetics,23, 494–516.

    PubMed  CAS  Google Scholar 

  • Sax, K. (1940). An analysis of X-ray induced chromosomal aberrations inTradescantia.Genetics,25, 41–68.

    PubMed  CAS  Google Scholar 

  • Sax, K. &Beal, J. M. (1934). Chromosomes in the Cycadales.J. Arnold Arbor.15, 255–8.

    Google Scholar 

  • Sax, K. &Sax, H. J. (1933). Chromosome number and morphology in the Conifers.J. Arnold Arbor.14, 356–75.

    Google Scholar 

  • Schultz, J. (1941). The function of heterochromatin.Proc. 7th Int. Genet. Congr. 1939, pp. 257–62.

  • Schultz, J., Caspersson, T. &Aquilonius, L. (1940). The genetic control of nucleolar composition.Proc. Nat. Acad. Sci., Wash.,26, 515–23.

    Article  CAS  Google Scholar 

  • Senn, H. A. (1938). Chromosome number relationships in the Leguminosae.Bibliogr. genet.12, 175–345.

    Google Scholar 

  • Stadler, L. J. (1932). On the genetic nature of induced mutations in plants.Proc. 6th Int. Congr. Genet.1, 274–94.

    Google Scholar 

  • Stebbins, G. L. Jr. (1938). Cytogenetic studies inPaeonia. II. The cytology of the diploid species and hybrids.Genetics,23, 83–110.

    PubMed  CAS  Google Scholar 

  • Sugiura, T. (1939). Chromosome numbers in Plumbaginaceae.Cytologia, Tokyo,10, 73–6.

    Google Scholar 

  • Sugiura, T. (1940). Chromosome studies on Papaveraceae with special reference to the phylogeny.Cytologia, Tokyo,11, 558–76.

    Google Scholar 

  • Tobgy, H. A. (1942). Cytological methods forCrepis species.Stain Tech.17, 171–5.

    Google Scholar 

  • Tobgy, H. A. (1943). The control of chromosome dimensions in interspecific hybrids. (MS. in preparation.)

  • Upcott, M. B. (1937). The genetic structure ofTulipa. II. Structural hybridity.J. Genet.34, 339–98.

    Article  Google Scholar 

  • Upcott, M. B. (1939). The genetic structure ofTulipa. III. Meiosis in polyploids.J. Genet.37, 303–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobgy, H.A. A cytological study ofCrepis fuliginosa, C. Neglecta, and theirF 1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number. Journ. of Genetics 45, 67–111 (1943). https://doi.org/10.1007/BF02982775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982775

Keywords

Navigation