Skip to main content
Log in

Development of the pellicle and thecal plates following ecdysis in the dinoflagellateGlenodinium foliaceum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The ultrastructure and development of the amphiesma of the dinoflagellateGlenodinium foliaceum was studied using conventional electron microscopy and immunocytochemistry. Ecdysis (shedding of the flagella, the outer two membranes of the cell, and the thecal plates) was induced by centrifugation. The cells were resuspended and the thickening of the pellicle and the development of the new thecal vesicles and plates was studied over a 9 h period. After ecdysis, the thin pellicle which underlay the thecal plates in the motile cells thickens to form a complex structure of four distinct layers: an outer layer of randomly oriented fibrils, a 50 nm layer of fibrils oriented perpendicular to the dense layer, the dense layer which has a trilaminate structure, and a wide inner homogeneous layer. The new thecal vesicles form in these pelliculate cells by the migration of electron translucent amphisomal vesicles over the layer of peripheral microtubules to a position directly under the plasmalemma. The thecal vesicles then flatten and elongate. A discontinuous pellicular layer appears within them. Subsequently, the thecal vesicles widen and are filled with a fibrillogranular substance overlying the pelliculate layer. The thecal plates form on top of this fibrillogranular material. By this time, most cells have escaped from the pellicle and are motile. At first, the outer thecal vesicle membrane is continuous with the inner thecal vesicle membrane at the sutures, but when this connection is broken, the dense pelliculate layers become continuous across the suture as does the inner thecal vesicle membrane. At ecdysis, this membrane becomes the new plasmalemma of the cell. Cells at each stage of pellicle thickening and thecal development were labelled with a polydonal antiserum raised against the 70 kDa epiplasmic protein ofEuglena acus. This antiserum labelled both the thecal plates of the motile cells and the inner homogeneous layer of the pellicle of ecdysed non-motile cells. No other amphiesmal structure was labelled, nor was any intracellular compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PBS:

phosphate-buffered saline

PIPES:

piperazine-N,N′-bis[2-ethane sulfonic acid]

References

  • Baroin A, Perasso R, Qu L-H, Brugerolle G, Bachellerie J-P, Adoute A (1988) Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci USA 85: 3474–3478

    Google Scholar 

  • Bricheux G, Brugerolle G (1986) The membrane cytoskeleton complex of Euglenoids. I. Biochemical and immunological characterization of the epiplasmic proteins ofEuglena acus. Eur J Cell Biol 40: 150–159

    Google Scholar 

  • — — (1987) The pellicular complex of Euglenoids II. A biochemical and immunological comparative study of major epiplasmic proteins. Protoplasma 140: 43–54

    Google Scholar 

  • Cachon J, Cachon M, Boillot A, Brown DL (1987) Cytoskeletal and myonemal structures of dinoflagellates are made of 2–3 nm filaments. Cell Motil Cytoskeleton 7: 325–336

    Google Scholar 

  • Dodge JD, Crawford RM (1968) Fine structure of the dinoflagellateAmphidinium carteri Hulbert. Protistologica 4: 231–242

    Google Scholar 

  • — — (1970 a) The morphology and fine structure ofCeratium hirundinella (Dinophyceae). J Phycol 6: 137–149

    Google Scholar 

  • — — (1970 b) A survey of thecal fine structure in the Dinophyceae. Bot J Linn Soc 63: 53–67

    Google Scholar 

  • — — (1971) Fine structure of the dinoflagellateOxyrrhis marina. I. The general structure of the cell. Protistologica 7: 295–304

    Google Scholar 

  • Dubreuil RR, Bouck GB (1985) The membrane skeleton of a unicellular organism consists of bridged, articulating strips. J Cell Biol 101: 1884–1896

    Google Scholar 

  • Dürr G (1979 a) Elektronenmikroskopische Untersuchungen am Panzer von Dmoflagellaten I.Gonyaulax polyedra. Arch Protistenkd 122: 55–87

    Google Scholar 

  • — (1979b) Elektronenmikroskopische Untersuchungen am Panzer von Dinoflagellaten II.Peridinium cinctum. Arch Protistenkd 122: 88–120

    Google Scholar 

  • Eckhardt AE, Hayes CE, Goldstein IJ (1976) A sensitive fluorescent method for the detection of glycoproteins in polyacrylamide gels. Anal Biochem 73: 192–197

    Google Scholar 

  • Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred from the gene sequence: evolutionary implications. Proc Natl Acad Sci USA 83: 8644–8648

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Lenaers G, Maroteaux L, Michot B, Herzog M (1989) Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. J Mol Evol 29: 40–51

    Google Scholar 

  • Loeblich AR III (1970) The amphiesma or dinoflagellate cell covering. In: Yochelson EL (ed) Proceedings of the North American Paleontological Convention, Chicago, Illinois, vol 2, part G. Allen Press, Lawrence, Kansas, pp 867–929

    Google Scholar 

  • — (1984) Dinoflagellate physiology and biochemistry. In: Spector DL (ed) Dinoflagellates. Academic Press, New York, pp 299–342

    Google Scholar 

  • Lucas IAN, Vesk M (1990) The fine structure of two photosynthetic species ofDinophysis (Dinophysiales, Dinophyceae). J Phycol 26: 345–357

    Google Scholar 

  • Mahoney DG (1984) The fine structure of the endosymbiont-containing dinoflagellatePeridinium foliaceum. MSc thesis, McGill University, Montreal

    Google Scholar 

  • Marrs JM, Levasseur PJ, Bouck GB (1991) Molecular and cellular basis for cell form inEuglena. J Phycol 27s: 47

    Google Scholar 

  • McIntosh L, Cattolico RA (1978) Preservation of algal and higher plant ribosomal RNA integrity during extraction and electrophoretic quantitation. Anal Biochem 91: 600–612

    Google Scholar 

  • Melkonian M, Höhfeld I (1988) Amphiesmal ultrastructure inNoctiluca miliaris Suriray (Dinophyceae). Helgoländer Meeresunters 42: 601–612

    Google Scholar 

  • Morrill LC (1984) Ecdysis and the location of the plasma membrane in the dinoflagellateHeterocapsa niei. Protoplasma 119: 8–20

    Google Scholar 

  • —, Loeblich AR III (1981) The dinoflagellate pellicular wall layer and its occurrence in the division Pyrrhophyta. J Phycol 17: 315–323

    Google Scholar 

  • — — (1983) Ultrastructure of the dinoflagellate amphiesma. Int Rev Cytol 82: 151–180

    Google Scholar 

  • Nevo Z, Sharon N (1969) The cell wall ofPeridinium westii, a non cellulosic glucan. Biochim Biophys Acta 173: 161–175

    Google Scholar 

  • Pokorny KS, Gold K (1973) Two morphological types of particulate inclusions in marine dinoflagellates. J Phycol 9: 218–224

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17: 208–212

    Google Scholar 

  • Roberts KR, Farmer MA, Schneider RM, Lemoine JE (1988) The microtubular cytoskeleton ofAmphidinium rhynchocephalum (Dinophyceae). J Phycol 24: 544–553

    Google Scholar 

  • Rogalski AA, Bouck GB (1980) Characterization and localization of a flagellar-specific membrane glycoprotein inEuglena. J Cell Biol 86: 424–435

    Google Scholar 

  • Schnepf E, Deichgräber G (1972) Über den Feinbau von Theka, Pusule und Golgi-Apparat bei dem DinoflagellatenGymnodinium spec. Protoplasma 74: 411–425

    Google Scholar 

  • —, Winter S, Mollenhauer D (1989)Gymnodinium aeruginosum (Dinophyta): a blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Plant Syst Evol 164: 75–91

    Google Scholar 

  • Schütt F (1895) Die Peridineen der Plankton-Expedition. Ergebnisse Plankton-Exped Humboldt-Stiftung 4: 1–170

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383–1387

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Google Scholar 

  • Taylor FJR (1987) Dinoflagellate morphology. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 24–91

    Google Scholar 

  • Vigues B, David D (1989) Demonstration of a 58 kd protein as a major component of the plasma membrane skeleton in the ciliateEntodinium bursa. Protoplasma 149: 11–19

    Google Scholar 

  • —, Bricheux G, Metivier C, Brugerolle G, Peck RK (1987) Evidence for common epitopes among proteins of the membrane skeleton of a ciliate, an euglenoid and a dinoflagellate. Eur J Protistol 23: 101–110

    Google Scholar 

  • Wedemayer GJ, Wilcox LW (1984) The ultrastructure of the freshwater, colorless dinoflagellatePeridiniopsis berolinense (Lemm.) Bourrelly (Mastigophora, Dinoflagellida). J Protozool 31: 444–453

    Google Scholar 

  • Wetherbee R (1975 a) The fine structure ofCeratium tripos, a marine armored dinoflagellate II. Cytokinesis and development of the characteristic cell shape. J Ultrastruct Res 50: 65–76

    Google Scholar 

  • — (1975 b) The fine structure ofCeratium tripos, a marine armored dinoflagellate III. Thecal plate formation. J Ultrastruct Res 50: 77–87

    Google Scholar 

  • Williams NE, Vaudaux PE, Skriver L (1979) Cytoskeletal proteins of the cell surface inTetrahymena. I. Identification and localization of major proteins. Exp Cell Res 123: 311–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricheux, G., Mahoney, D.G. & Gibbs, S.P. Development of the pellicle and thecal plates following ecdysis in the dinoflagellateGlenodinium foliaceum . Protoplasma 168, 159–171 (1992). https://doi.org/10.1007/BF01666262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666262

Keywords

Navigation