Skip to main content
Log in

Molecular mechanisms of neuronal plasticity during learning: The role of secondary messengers

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

We present published data along with our own results concerning the role of second messengers and their intracellular receptors in molecular mechanisms associated with the plasticity of neurons during learning. The participation of cyclic 3′,5′-adenosine monophosphate, cyclic 3′5′-guanosine monophosphate, calcium, calmodulin, and also the metabolic products of inositol phospholipids, inositol-1,4,5-triphosphate, diacylglycerol and the protein kinase C activated by it, arachidonic acid, and the products of its lipoxygenase oxidation during the regulation of neuronal plasticity over the course of prolonged potentiation, sensitization, habituation, and classical associative training are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. I. P. Ashmarin, “Molecular mechanisms of neurological memory,” in: Mechanism of Memory [in Russian], G. A. Vartanyana (editor), Nauka, Leningrad (1987), pp. 57–77.

    Google Scholar 

  2. L. L. Voronin, Analysis of the Plastic Properties of the Central Nervous System [in Russian], Metsniereba, Tbilisi (1982).

    Google Scholar 

  3. T. L. D'yakonova, “What and how a neuron learns,” Zh. Obshch. Biol.,48, 3, 311–324 (1987).

    PubMed  Google Scholar 

  4. V. T. Ivashkin, V. Yu. Vasil'ev, and E. S. Severin, The Level of Regulation of the Functional Activity of Organs and Tissues, Nauka, Leningrad (1987).

    Google Scholar 

  5. R. P. Kashakashvili, “The effect of calcium ions upon the postsynaptic potentiation of dendritic potentials of the cerebral cortex,” Soobshch Akad. Nauk GSSR,122, 2, 397–400 (1983).

    Google Scholar 

  6. Yu. Konorski, The Integrative Activity of the Brain [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  7. B. I. Kotlyar, Forward in: The Plasticity of Nerve Cells (Current State of the Problem) [in Russian], B. I. Kolyar (editor), Moscow State University, Moscow (1977), p. 3.

    Google Scholar 

  8. B. I. Kotlyar, The Plasticity of the Nervous System [Russian translation], Moscow State University, Moscow (1986).

    Google Scholar 

  9. R. I. Kruglikov, “Neurochemical mechanisms of learning and memory,” in: The Physiology of Behavior. Neurophysiological Patterns [in Russian], A. S. Batueva (editor), Nauka, Leningrad (1986), pp. 633–698.

    Google Scholar 

  10. E. Kandel, The Cellular Basis of Learning [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  11. A. S. Pivovarov, E. I. Drozdova, and B. I. Kotlyar, “An investigation of the role of cAMP and cGMP in the short-term plasticity of cholinoreceptors of identified neurons of the garden snail,” 6th All-Union Symposium, The Role of Nucleotides and Second Messengers in the Regulation of Enzymatic Reactions, Tez. Dokl. Petrozavodsk. Petrozavodsk (1988), p. 140.

    Google Scholar 

  12. A. S. Pivovarov and G. N. Saganelidze, “Modulation of the short-term plasticity of the cholinoreceptors membrane of mollusk neurons,” Zh. Vyssh. Nerv. Deyat.,36, 5, 947–955.

  13. A. S. Pivovarov and G. N. Saganelidze, “Identification of nicotine and muscarine cholinoreceptors associated with the soma of neuron PPa4 of the garden snail,” Neirofiziologiya,20, 2, 203–212 (1988).

    Google Scholar 

  14. E. N. Sokolov, “Endoneuronal mechanisms of reinforcement,” Zh. Vyssh. Nerv. Deyat.,37, 3, 403–407 (1987).

    Google Scholar 

  15. V. A. Tkachuk, Introduction to Molecular Endocrinology, Moscow State University, Moscow (1983).

    Google Scholar 

  16. L. E. Tsitolovskii, “The plasticity of the electroexcitable membrane of the neuron under conditions of blocking by calmodulin,” Zh. Vyssh. Nerv. Deyat.,34, 1, 163–165 (1984).

    Google Scholar 

  17. T. W. Abrams, V. F. Castellucci, J. S. Camardo, et al., “Two endogenous neuropeptides modulate the gill and siphon withdrawal reflex inAplysia by presynaptic facilitation involving cAMP-dependent closure of a serotonin-sensitive potassium channel,” Proc. Natl. Acad. Sci. USA,81, 24, 7956–7960 (1984).

    PubMed  Google Scholar 

  18. J. Acosta-Urquidi, D. L. Alkon, and J. T. Neary, “Ca2+-dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning,” Science224, 4654, 1254–1257 (1984).

    PubMed  Google Scholar 

  19. R. F. Akers, D. M. Lovinger, and P. A. Colley, et al., “Translocation of protein kinase C activity may mediate hippocampal long-term potentiation,” Science,231, 4738, 587–589 (1986).

    PubMed  Google Scholar 

  20. R. F. Akers and A. Routtenberg, “Protein kinase C phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity,” Brain Res.,334, 1, 147–151 (1985).

    PubMed  Google Scholar 

  21. D. L. Alkon, “Changes in membrane currents during learning,” J. Exp. Biol.,122, 95–122 (1984).

    Google Scholar 

  22. D. L. Alkon, J. Acosta-Urquidi, J. Olds, et al., “Protein kinase injection reduces voltage-dependent potassium currents,” Science,219, 4582, 303–306 (1983).

    PubMed  Google Scholar 

  23. D. L. Alkon, M. Kubota, J. T. Neary, et al., “C-kinase activation prolongs Ca+-dependent inactivation of K+ currents,” Biochem. Biophys. Res. Communs.,134, 3, 1245–1253 (1986).

    Google Scholar 

  24. D. L. Alkon and S. Naito, “Biochemical mechanisms of memory storage,” J. Physiol. (France),81, 4, 252–260 (1986).

    Google Scholar 

  25. D. L. Alkon and M. Sakakibara, “Calcium activates and inactivates a photoreceptor soma potassium current,” Biophys. J.,48, 6, 983–995 (1985).

    PubMed  Google Scholar 

  26. D. L. Alkon, J. J. Shoukimas, and E. Heldman, “Calcium-mediated decrease of a voltage-dependent potassium current,” Biophys. J.,40, 3, 245–250 (1982).

    PubMed  Google Scholar 

  27. P. Andersen, P. Greengard, G.-Y. Hu, et al., “Injection of protein kinase C in rat hippocampal pyramidal cells in vitro induces plastic changes similar to long-term potentiation,” J. Physiol. (Engl),390, 18 (1987).

    Google Scholar 

  28. L. Aniksztejn, M. -P. Roisin, H. Gozlan, and Y. Ben-Ari, “Long-lasting potentiation produced by a phorbol ester in the hippocampus of unaesthetized rats is not associated with a persistent enhanced release of excitatory amino acids,” Neurosci. Lett.,81, 3, 291–296 (1987).

    PubMed  Google Scholar 

  29. B. Bank, D. Coulter, H. Rasmussen, et al., “Effects of intracellular injection of protein kinase C upon NMR-conditioning,” Soc. Neurosci. Abstr.,12, 182 (1986).

    Google Scholar 

  30. J. M. Baraban, S. H. Snyder, and B. E. Alger, “Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: Electrophysiological effects of phorbol esters,” Proc. Natl. Acad. Sci. USA,82, 8, 2538–2542 (1985).

    PubMed  Google Scholar 

  31. A. Baranyi, M. B. Szente, and C. D. Woody, “Intracellular injection of phorbol ester increases the excitability of neurons of the motor cortex of awake cats,” Brain Res.,424, 2, 396–401 (1987).

    PubMed  Google Scholar 

  32. F. Belardetti, C. Bionti, M. Brunelli, et al., “Heterosynaptic facilitation and behavioral sensitization are inhibited by lowering endogenous cyclic AMP inAplysia,” Brain Res.,282, 1–2, 95–104 (1983).

    Google Scholar 

  33. L. Bernier, V. F. Castelluci, E. R. Kandel, and J. H. Schwartz, “Facilitatory transmitter causes a selective and prolonged increase in adenosine 3′,5′-monophosphate in sensory neurons mediating the gill and siphon withdrawal reflex in Aplysia,” J. Neurosci.,2, 12, 1682–1691 (1982).

    PubMed  Google Scholar 

  34. M. Berridge, “Inositol triphosphate and diacylglycol as second messengers,” Biochem. J.,220, 2, 345–360 (1984).

    PubMed  Google Scholar 

  35. S. Bevan and J. N. Wood, “Arachidonic-acid metabolites as second messengers,” Nature,328, 6125, 20 (1987).

    PubMed  Google Scholar 

  36. T. V. P. Bliss, M. P. Clements, M. L. Errington, and M. A. Lynch, “Evidence that hippocampal long-term potentiation in the rat is associated with a G-protein-mediated modulation of phosphatidylinositol turnover,” J. Physiol. (Engl.),398, 95 (1988).

    Google Scholar 

  37. M. B. Boyle, M. Klein, S. J. Smith, and E. R. Kandel, “Serotonin increases intracellular Ca2+ transient in voltage-clamped sensory neurons ofAplysia californica,” Proc. Natl. Acad. Sci. USA,81, 23, 7642–7646 (1984).

    PubMed  Google Scholar 

  38. M. Brunelli, V. Castellucci, and E. R. Kandel, “Synaptic facilitation and behavioral sensitization in Aplysia: Possible role of serotonin and cyclic AMP,” Science,194, 4270, 1178–1181 (1976).

    PubMed  Google Scholar 

  39. V. Castellucci, W. N. Frost, P. Goelet, et al., “Cellular and molecular analysis of long-term sensitization inAplysia,” J. Physiol. (France), 81, 4, 349–357 (1986).

    Google Scholar 

  40. V. Castellucci, E. R. Kandel, J. H. Schwartz, et al., “Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization inAplysia,” Proc. Natl. Acad. Sci. USA,77, 12, 7492–7496 (1980).

    PubMed  Google Scholar 

  41. V. Castellucci, A. Nairn, P. Greengard, et al., “Inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinase blocks presynaptic facilitation inAplysia,” J. Neurosci.,2, 12, 1673–1681 (1982).

    PubMed  Google Scholar 

  42. J. A. Connor and D. L. Alkon, “Light- and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors,” J. Neurophysiol.,51, 4, 745–752 (1984).

    PubMed  Google Scholar 

  43. T. J. Crow and D. L. Alkon, “Associative behavioral modification inHermissenda: cellular correlates,” Science,209, 4454, 412–414 (1980).

    Google Scholar 

  44. S. A. De Riemer, J. A. Strong, K. A. Albert, et al., “Enhancement of calcium current inAplysia neurons by phorbol ester and protein kinase C” Nature,313, 6000, 313–316 (1985).

    PubMed  Google Scholar 

  45. C. P. Down, “Inositol phosphates: a family of signal molecules?” Trends Neurosci.,11, 8, 336–338 (1988).

    PubMed  Google Scholar 

  46. Y. Dudai, “Some properties of adenylate cyclase which might be important for memory formation,” FEBS Lett.,191, 2, 165–170 (1985).

    PubMed  Google Scholar 

  47. T. V. Dunwiddie and G. Lynch, “The relationship betweeen extracellular calcium concentration and the induction of hippocampal long-term potentiation,” Brain. Res.,169, 1, 103–110 (1979).

    PubMed  Google Scholar 

  48. J. Farley and S. Auerbach, “Protein kinase C activation induces conductance changes inHermissenda photoreceptors like those seen in associative learning,” Nature,319, 6050, 220–223 (1986).

    PubMed  Google Scholar 

  49. K. J. Feasey, M. A. Lynch, and T. V. P. Bliss, “Long-term potentiation is associated with an increase in calcium-dependent potassium stimulated release of [14C]glutamate from hippocampal slices: an ex vivo study in the rat,” Brain Res.,364, 1, 39–44 (1986).

    PubMed  Google Scholar 

  50. R. C. Finn, M. Browning, and G. Lynch, “Trifluoperazine inhibits hippocampal long-term potentiation and the phosphorylation of 40,000 dalton protein,” Neurosci. Lett.,19, 1, 103–108 (1980).

    PubMed  Google Scholar 

  51. K. J. Gringrich and J. H. Byrne, “Single-cell neuronal model for associative learning,” J. Neurophysiol.,57, 6, 1705–1715 (1987).

    PubMed  Google Scholar 

  52. R. D. Hawkins, “A cellular mechanism of classical conditioning inAplysia,” J. Exp. Biol.,112, 113–123 (1984).

    PubMed  Google Scholar 

  53. R. D. Hawkins, T. W. Adams, T. J. Carew, and E. R. Kandel, “A cellular mechanism of classical conditioning inAplysia: activity-dependent amplification of presynaptic facilitation,” Science,219, 4583, 400–405 (1983).

    PubMed  Google Scholar 

  54. C. -Y. Hu, Ø. Hvalby, S. I. Walaas, et al., “Protein kinase C injection into hippocampal pyramidal cells elicits features of long-term potentiation,” Nature,328, 6129, 426–429 (1987).

    PubMed  Google Scholar 

  55. Y. Izumi, K. -I. Ito, H. Miyakawa, and H. Kato, “Requirement of extracellular Ca2+ after tetanus for induction of long-term potentiation in guinea-pig hippocampal slices,” Neurosci. Lett.,77, 2, 176–180 (1987).

    PubMed  Google Scholar 

  56. E. R. Kaczmarek and F. A. Strumwasser, “A voltage-clamped analysis of currents underlying cAMP-induced membrane modulation in isolated peptidergic neurons ofAplysia,” J. Neurophysiol.,52, 2, 340–349 (1984).

    PubMed  Google Scholar 

  57. E. R. Kandel, “Calcium and the control of synaptic strength during learning,” Nature,293, 5835, 697–700 (1981).

    PubMed  Google Scholar 

  58. M. Klein, B. Hochner, and E. R. Kandel, “Facilitatory transmitters and cyclic AMP can modulate accomodation as well as transmitter release inAplysia sensory neurons: Evidence for parallel processing in a single cell,” Proc. Natl. Acad. Sci. USA,83, 20, 7994–7998 (1986).

    Google Scholar 

  59. M. Klein and E. R. Kandel, “Presynaptic modulation of voltage-dependent Ca2+ current: Mechanism for behavioral sensitization inAplysia californica,” Proc. Natl. Acad. Sci. USA,75, 7, 3512–3516 (1978).

    PubMed  Google Scholar 

  60. M. Klein, E. Shapiro, and E. R. Kandel, “Synaptic plasticity and the modulation of the Ca2+ current,” J. Exp. Biol.,89, 117–157 (1980).

    PubMed  Google Scholar 

  61. R. Kretz, E. Shapiro, and E. R. Kandel, “Post-tetanic potentiation at an identified synapse inAplysia is correlated with a Ca2+-activated K+ current in the presynaptic neuron: Evidence for Ca2+ accumulation,” Proc. Natl. Acad. Sci. USA79, 17, 5430–5434 (1982).

    PubMed  Google Scholar 

  62. W.-L. Lee, R. Anwyl, and M. Rowan, “L-Aminopyridine-mediated increase in long-term potentiation in Ca1 of rat hippocampus,” Neurosci. Lett.,70, 1, 106–109 (1986).

    PubMed  Google Scholar 

  63. D. Lichtstein and D. Rodbard, “A second look at the second messenger hypothesis,” Life Sci.,40, 21, 2041–2051 (1987).

    PubMed  Google Scholar 

  64. D. J. Linden, K. Murakami, and A. Routtenberg, “A newly discovered protein kinase C activator (oleic acid) enhances long-term potentiation in the intact hippocampus,” Brain Res.,379, 2, 358–363 (1986).

    PubMed  Google Scholar 

  65. D. M. Lovinger, Ka. L. Wong, K. Murakami, and A. Routtenberg, “Protein kinase C inhibitors eliminate hippocampal long-term potentiation,” Brain Res.,436, 1, 117–183 (1987).

    Google Scholar 

  66. G. Lynch and M. Baudry, “The biochemistry of memory: a new and specific hypothesis,” Science,224, 4653, 1057–1063 (1984).

    PubMed  Google Scholar 

  67. G. Lynch, J. Larson, S. Kelso, et al., “Intracellular injections of EGTA block induction of hippocampal long-term potentiation,” Nature,305, 5936, 719–721 (1983).

    PubMed  Google Scholar 

  68. M. A. Lynch and T. V. Bliss, “Long-term potentiation of synaptic transmission in the hippocampus of the rat: effect of calmodulin and oleoyl-acetyl-glycerol on release of [3H]glutamate,” Neurosci. Lett.,65, 2, 171–176 (1986).

    PubMed  Google Scholar 

  69. M. A. Lynch and T. V. P. Bliss, “On the mechanism of enhanced release of [14C] glutamate in hippocampal long-term potentiation,” Brain Res.,369, 1–2, 405–408 (1986).

    PubMed  Google Scholar 

  70. M. A. Lynch, M. P. Clements, M. L. Errington, and T. V. P. Bliss, “Long-term potentiation is associated with increased phosphatidylinositol turnover in slices and synaptosomes from area CA3 of the rat hippocampus,” Neuroscience,22, Suppl. P. S511 (1987).

    Google Scholar 

  71. D. V. Madison, R. Malinow, and R. W. Tsien, “Inhibitors of protein kinase C block long-term potentiation in rat hippocampal slices,” J. Physiol. (Engl),398, 18 (1988).

    Google Scholar 

  72. R. C. Malenka, G. S. Ayoub, and R. A. Nicoll, “Phorbol esters enhance transmitter release in rat hippocampal slices,” Brain Res.,403, 1, 198–203 (1987).

    PubMed  Google Scholar 

  73. R. C. Malenka, D. V. Madison, and R. A. Nicoll, “Potentiation of synaptic transmission in the hippocampus by phorbol esters,” Nature,321, 6066, 175–177 (1986).

    PubMed  Google Scholar 

  74. H. Matsuzawa and M. Nirenberg, “Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells,” Proc. Natl. Acad. Sci. USA,72, 9, 3472–3476 (1975).

    PubMed  Google Scholar 

  75. I. Mody, K. G. Baimbridge, and J. J. Miller, “Blockade of tetanic- and calcium-induced long-term potentiation in the hippocampal slice preparation by neuroleptics,” Neuropharmacology,23, 6, 625–631 (1984).

    PubMed  Google Scholar 

  76. D. Mulkeen, R. Anwyl, and M. J. Rowan, “Enhancement of long-term potentiation by the calcium channel agonist Bayer K8644 in Ca1 of the rat hippocampus in vitro,” Neurosci. Lett.,90, 3, 351–355 (1987).

    Google Scholar 

  77. J. T. Neary and D. L. Alkon, “Protein phosphorylation/dephosphorylation and the transient, voltage-dependent potassium conductance inHermissenda crassicornis,” J. Biol. Chem.258, 14, 8979–8993 (1983).

    PubMed  Google Scholar 

  78. J. T. Neary, S. Naito, A. DeWeer, and D. L. Alkon, “Calcium/diacylglycol-activated, phospholipid-dependent protein kinase in theHermissenda connections.” J. Neurochem.,47, 5, 1405–1411 (1986).

    PubMed  Google Scholar 

  79. R. A. Nichols, J. W. Haycoch, J. K. T. Wang, and P. Greengard, “Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes,” J. Neurochem.,48, 2, 615–621 (1987).

    PubMed  Google Scholar 

  80. D. Piomelli, A. Volterro, N. Dale, et al., “Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition ofAplysia sensory cells,” Nature,328, 6125, 38–43 (1987).

    PubMed  Google Scholar 

  81. A. Routtenberg, P. Colley, D. Linden, et al., “Phorbol ester promotes growth of synaptic plasticity,” Brain Res.,378, 2, 374–378 (1986).

    PubMed  Google Scholar 

  82. A. Routtenberg, D. Lovinger, and D. Steward, “Selective increase in the phosphorylation of a 47 kD protein (F1) directly related to long-term potentiation,” Behav. Neural Biol.,43, 1, 3–11 (1985).

    PubMed  Google Scholar 

  83. A. Routtenberg, R. Nelson, D. Lovinger, and R. Akers, “Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth,” Behav. Neural Biol.,44, 2, 186–200 (1985).

    PubMed  Google Scholar 

  84. M. Sakakibara, D. Alkon, R. DeLorenzo, et al., “Modulation of calcium-mediated inactivation of ionic currents by Ca2+/calmodulin-dependent protein kinase II,” Biophys. J.,50, 2, 319–327 (1986).

    PubMed  Google Scholar 

  85. M. Sakakibara, D. Alkon, J. T. Neary, et al., “Inositol triphosphate regulation of photoreceptor membrane currents,” Biophys. J.,50, 5, 797–803 (1986).

    PubMed  Google Scholar 

  86. E. Shapiro, V. F. Castellucci, and E. R. Kandel, “Presynaptic inhibition inAplysia involves a decrease in the Ca2+ current of the presynaptic neuron,” Proc. Natl. Acad. Sci. USA,77, 2, 1185–1189 (1980).

    PubMed  Google Scholar 

  87. T. Shimahara and L. Tauc, “The role of cyclic AMP in the modulation of synaptic efficacy,” J. Physiol. (France),74, 5, 515–519 (1978).

    Google Scholar 

  88. S. A. Siegelbaum, J. S. Camardo, and E. R. Kandel, “Serotonin and cyclic AMP close single K+ channels inAplysia sensory neurons,” Nature,299, 5882, 413–417 (1982).

    PubMed  Google Scholar 

  89. P. K. Stanton and F. A. X. Schanne, “Hippocampal long-term potentiation increases mitochondrial calcium pump activity in rat,” Brain Res.,382, 1, 185–188 (1986).

    PubMed  Google Scholar 

  90. U. Staubl, J. Larson, O. Thibault, et al., “Chronic administration of a thiol-protein-adenylate cyclase inhibitor blocks long-term potentiation of synaptic responses,” Brain Res.,444, 1, 153–158 (1988).

    PubMed  Google Scholar 

  91. J. F. Storm, “Phorbol esters broaden the action potential in CA1 hippocampal pyramidal cells,” Neurosci. Lett.,75, 1, 71–74 (1987).

    PubMed  Google Scholar 

  92. E. W. Sutherland, T. W. Rall, and M. Menon, “Adenylate cyclase. I. Distribution, preparation, and properties,” J. Biol. Chem.,237, 4, 1220–1227 (1962).

    PubMed  Google Scholar 

  93. J. S. Taube and P. A. Schwartzkrain, “Ineffectiveness of organic calcium channel blockers in antagonizing long-term potentiation,” Brain Res.,379, 2, 275–285 (1986).

    PubMed  Google Scholar 

  94. R. W. Turner, K. G. Baimbridge, and J. J. Miller, “Calcium-induced long-term potentiation in the hippocampus,” Neuroscience,7, 6, 1411–1416 (1982).

    PubMed  Google Scholar 

  95. J. P. Walsch and J. H. Byrne, “Forskolin mimics and blocks a serotonin sensitive decreased K+ conductance in tail sensory neurons ofAplysia,” Neurosci. Lett.,52, 1, 7–11 (1984).

    PubMed  Google Scholar 

  96. E. T. Walters and J. H. Byrne, “Slow depolarization produced by associative conditioning ofAplysia sensory neurons may enhance Ca2+ entry,” Brain Res.,280, 1, 165–168 (1983).

    PubMed  Google Scholar 

  97. H. Wigström, J. W. Swann, and P. Andersen, “Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice,” Acta Physiol. Scand.,105, 1, 126–128 (1979).

    PubMed  Google Scholar 

  98. C. D. Woody, D. L. Alkon, and B. Hay, “Depolarization-induced effects of Ca2+-calmodulin-dependent protein kinase injection in vivo in single neurons of cat motor cortex,” Brain Res.,321, 1, 192–197 (1984).

    PubMed  Google Scholar 

  99. C. D. Woody, B. E. Swartz, and E. Gruen, “Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats,” Brain Res.,158, 2, 373–395 (1978).

    Google Scholar 

  100. C. Yamamoto, M. Higashima, and S. Sawada, “Quantal analysis of potentiating action of phorbol ester on synaptic transmission in rat hippocampus,” Neurosci. Res.,5, 1, 28–38 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nostiimeni I. P. Pavlova, Vol. 39, No. 2, pp. 195–214, March–April, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotlyar, B.I., Pivovarov, A.S. Molecular mechanisms of neuronal plasticity during learning: The role of secondary messengers. Neurosci Behav Physiol 20, 118–135 (1990). https://doi.org/10.1007/BF01268131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01268131

Keywords

Navigation