Skip to main content
Log in

A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Limnological surveys show that fossil pigment concentration is an accurate predictor of algal production. However, experimental and mass flux studies indicate that >90% of pigment is degraded to colourless compounds before permanent burial. To reconcile these views, this paper reviews current literature on pigment degradation and proposes a hierarchical control model for pigment deposition and fossil abundance. Over the widest range of production, pigment deposition and fossil concentration are proportional to algal standing crop. However, within a narrower range, the actual concentration of pigment in sediments is regulated by photo- and chemical oxidation. Three phases of loss exist: rapid oxidation in the water column (T1/2=days); slower post-depositional loss in surface sediments (T1/2=years); and very slow loss of double bonds in deep sediments (T1/2=centuries). Despite losses during deposition, fossil and algal abundance remain correlated through time, so long as there is no change in basin morphometry, light penetration, stratification or deepwater oxygen content. At the finest scale, food-web processes can increase the preservation of pigments from edible algae by incorporating pigments into feces that sink rapidly and bypass water column losses. As a consequence of selective loss during deposition and initial burial, carotenoid relative abundance is an unreliable measure of phytoplankton community composition. Instead, absolute concentration — scaled to the historical maximum — should be used for fossil interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. S. & R. T. Prentki, 1986. Sedimentary pigments as an index of the trophic status of Lake Mead. Hydrobiol. 143: 71–77.

    Google Scholar 

  • Anderson, N. J., 1990a. Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. J. Paleolimnol. 3: 143–160.

    Google Scholar 

  • Anderson, N. J., 1990b. Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnol. Oceanogr. 35: 497–508.

    Google Scholar 

  • Axelsson, L., C. Dahlin & H. Ryberg, 1982. The function of carotenoids during chloroplast development. V. Correlation between carotenoid content, ultrastructure and chlorophyllb to chlorophylla ratio. Physiol. Plant. 55: 111–116.

    Google Scholar 

  • Barker, P., 1992. Differential diatom dissolution in Late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J. Paleolimnol. 7: 235–251.

    Google Scholar 

  • Barlow, R. G., P. H. Burkill & R. F. C. Mantoura, 1988. Grazing and degradation of algal pigments by marine protozoanOxyrrhis marina. J. exp. mar. Biol. Ecol. 119: 119–129.

    Google Scholar 

  • Belcher, J. H. & G. E. Fogg, 1964. Chlorophyll derivatives in the sediments of two English lakes. In Miyaka, Y. & T. Koyama, eds. Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry. Maruzen Co. Tokyo: 39–48.

    Google Scholar 

  • Bianchi, T. S. & S. Findlay, 1990. Plant pigments as tracers of emergent and submergent macrophytes from the Hudson River. Can. J. Fish. aquat. Sci. 47: 492–494.

    Google Scholar 

  • Bianchi, T. S. & S. Findlay, 1991. Decomposition of Hudson estuary macrophytes: photosynthetic pigment transformations and decay constants. Estuar. 14: 67–73.

    Google Scholar 

  • Bianchi, T. S., S. Findlay & D. Fontvieielle, 1991. Experimental degradation of plant materials in Hudson River sediments. I. Heterotrophic transformations of plant pigments. Biogeochemistry 12: 171–187.

    Google Scholar 

  • Bickoff, E. M., A. L. Livingston, G. F. Bailey & C. R. Thompson, 1954. Xanthophylls in fresh and dehydrated alfalfa. Agricult. Food Chem. 2: 563–567.

    Google Scholar 

  • Brassell, S. C., G. Eglington & J. R. Maxwell, 1983. The geochemistry of terpenoids and steroids. Biochem Soc. Trans. 11: 575–586.

    Google Scholar 

  • Brenner, M. & M. W. Binford, 1988. Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. aquat. Sci. 45: 294–300.

    Google Scholar 

  • Britton, G. & T. W. Goodwin, 1969. The occurrence of phytoene 1,2-oxide and related carotenoids in tomatoes. Phytochemistry 8: 2257–2258.

    Google Scholar 

  • Brown, S. R., 1969. Paleolimnological evidence from fossil pigments. Mitt. int. Ver. theor. Angew. Limnol. 17: 95–103.

    Google Scholar 

  • Brown, S. R. & B. Colman, 1963. Oscillaxanthin in lake sediments. Limnol. Oceanogr. 8: 352–353.

    Google Scholar 

  • Brown, S. B., J. D. Houghton & G. A. F. Hendry, 1991. Chlorophyll breakdown. In Scheer, H., ed. Chlorophylls. CRC Press. Ann Arbor: 465–489.

    Google Scholar 

  • Callot, H.J., 1991. Geochemistry of chlorophylls. In Scheer, H., ed. Chlorophylls. CRC Press. Ann Arbor: 339–364.

    Google Scholar 

  • Carpenter, S. R. & A. M. Bergquist, 1985. Experimental tests of grazing indicators based on chlorophylla degradation products. Arch. Hydrobiol. 102: 303–317.

    Google Scholar 

  • Carpenter, S. R., M. M. Elser & J. J. Elser, 1986. Chlorophyll production, sedimentation and degradation: implications for paleolimnology. Limnol. Oceanogr. 31: 112–124.

    Google Scholar 

  • Carpenter, S. R. & others, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Google Scholar 

  • Carpenter, S. R., P. R. Leavitt, J. J. Elser & M. M. Elser, 1988. Chlorophyll budgets: response to food web manipulations. Biogeochemistry 6: 79–90.

    Google Scholar 

  • Cary, S. C., J. T. Lovette, P. J. Perl, M. E. Huntley & M. Vernet, 1992. A microencapsulation technique for introducing pure compounds in zooplankton diets. Limnol. Oceanogr. 37: 404–413.

    Google Scholar 

  • Cheesman, D. F., W. L. Lee & P. F. Zagalsky, 1967. Carotenoproteins in invertebrates. Biol. Rev. 42: 132–160.

    Google Scholar 

  • Conover, R. J., R. Durvasula, S. Roy & R. Wang, 1986. Probable loss of chlorophyll-derived pigments during passage through the gut of zooplankton and some of the consequences. Limnol. Oceanogr. 31: 878–887.

    Google Scholar 

  • Cranwell, P. A., 1976. Decomposition of aquatic biota and sediment formation: lipid components of two blue-green algal species and the detritus resulting from microbial attack. Freshwat. Biol. 6: 481–488.

    Google Scholar 

  • Daley, R. J., 1973. Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects. Arch. Hydrobiol. 72: 409–439.

    Google Scholar 

  • Daley, R. J. & S. R. Brown, 1973. Experimental characterization of lacustrine chlorophyll diagenesis. I. Physiological and environmental effects. Arch. Hydrobiol. 72: 277–304.

    Google Scholar 

  • Davies, B. H., 1976. Carotenoids. In Goodwin, T. W., ed. Chemistry and Biochemistry of Plant Pigments. Vol. II. Academic Press. New York: 38–165.

    Google Scholar 

  • Davis, R. B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.

    Google Scholar 

  • Davis, M. B., R. E. Moeller & J. Ford, 1984. Sediment focusing and pollen influx. In Haworth, E. Y. & J. W. G. Lund, eds. Lake Sediments and Environmental History. Leicester University Press. Bath: 261–294.

    Google Scholar 

  • Deevey, E. S., H. Vaughan & G. B. Deevey, 1977. Lakes Yaxha and Sacnab, Petenm Guatemala: planktonic fossils and sediment focusing. In Golterman, H. L., ed. Interactions Between Sediments and Fresh Water. Junk. The Hague: 189–196.

    Google Scholar 

  • Depinto, J. V., 1977. Water column death and decomposition of phytoplankton: an experimental and modelling review. In Scavia, D. & A. Robertson, eds. Lake Ecosystem Modelling. Ann Arbor Science. Ann Arbor: 25–52.

    Google Scholar 

  • El-Tinay, A. H. & C. O. Chichester, 1970. Oxidation of β-carotene. Site of initial attack. J. Org. Chem. 35: 2290–2293.

    Google Scholar 

  • Engstrom, D. R. & E. B. Swain, 1986. The chemistry of lake sediments in time and space. Hydrobiologia 143: 37–44.

    Google Scholar 

  • Fallon, R. D. & T. D. Brock, 1980. Planktonic blue-green algae: production, sedimentation and decomposition in Lake Mendota, WI. Limnol. Oceanogr. 25: 72–88.

    Google Scholar 

  • Ferrante, J. G. & J. I. Parker, 1977. Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan. Limnol. Oceanogr. 22: 92–98.

    Google Scholar 

  • Flannery, M. S., R. D. Snodgrass & T. J. Whitmore, 1982. Deepwater sediments and trophic conditions in Florida lakes. Hydrobiol. 92: 597–602.

    Google Scholar 

  • Fogg, G. E. & J. H. Belcher, 1961. Pigments from the bottom deposits of an English lake. New Phytol. 60: 129–138.

    Google Scholar 

  • Fox, D. L., 1944. Biochemical fossils. Science 100: 111–113.

    Google Scholar 

  • Fox, D. L., D. M. Updegraff & G. D. Novelli, 1944. Carotenoid pigments in the ocean floor. Arch. Biochem. 5: 1–23.

    Google Scholar 

  • Foy, R. H., 1987. A comparison of chlorophylla and carotenoid concentrations as indicators of algal volume. Freshwat. Biol. 17: 237–250.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolimnol. 1: 179–192.

    Google Scholar 

  • Furlong, E. T. & R. Carpenter, 1988. Pigment preservation and remineralization in oxic coastal marine sediments. Geochim. Cosmochim. Acta 52: 87–99.

    Google Scholar 

  • Gieskes, W. W. & G. W. Kraay, 1986. Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellateCorymbellus aureus during the spring bloom in the northern North Sea in 1983. Mar. Biol. 92: 45–52.

    Google Scholar 

  • Goericke, R. & N. A. Welschmeyer, 1992. Pigment turnover in the marine diatomThalassiosira weissflogii. II. The14CO2-labelling kinetics of carotenoids. J. Phycol. 28: 507–517.

    Google Scholar 

  • Goldman, C. R. & E. de Amezaga, 1984. Primary productivity and precipitation at Castle Lake and Lake Tahoe during twenty-four years, 1959–1982. Int. Ver. theor. Limnol. Angew. Verh. 22: 591–599.

    Google Scholar 

  • Goodwin, T. W., 1980. The Biochemistry of the Carotenoids. Vol. 2. Animals. Chapman & Hall. New York.

    Google Scholar 

  • Gorham, E. & J. E. Sanger, 1972. Fossil pigments in the surface sediments of a meromictic lake. Limnol. Oceanogr. 17: 618–622.

    Google Scholar 

  • Gorham, E. & J. Sanger, 1975. Fossil pigments in Minnesota lake sediments and their bearing upon the balance between terrestrial and aquatic inputs to sedimentary organic matter. Ver. int. Ver. theor. Ang. Limnol. 19: 2267–2273.

    Google Scholar 

  • Gorham, E., J. W. G. Lund, J. E. Sanger & W. E. Dean, Jr., 1974. Some relationships between algal standing crop, water chemistry, and sediment chemistry in the English Lakes. Limnol. Oceanogr. 19: 601–617.

    Google Scholar 

  • Gowing, M. M. & M. W. Silver, 1983. Origins and microenvironments of bacteria mediating fecal pellet decomposition in sea water. Mar. Biol. 73: 7–16.

    Google Scholar 

  • Green, J., 1957. Carotenoids inDaphnia. Proc. Roy. Soc. Lond. 147: 392–401.

    Google Scholar 

  • Griffiths, M., 1978. Specific blue-green algal carotenoids in sediments of Esthwaite Water. Limnol. Oceanogr. 23: 777–784.

    Google Scholar 

  • Griffiths, M., P. S. Perrott & W. T. Edmondson, 1969. Oscillaxanthin in the sediment of Lake Washington. Limnol. Oceanogr. 14: 317–326.

    Google Scholar 

  • Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiol. 103: 103–106.

    Google Scholar 

  • Haberyan, K. A., 1990. The misrepresentation of the planktonic diatom assemblage in traps and sediments: southern Lake Malawi, Africa. J. Paleolimnol. 3: 35–44.

    Google Scholar 

  • Hallegraeff, G. M., I. J. Mous, R. Veeger, B. J. G. Flik & J. Ringelberg, 1978. A Comparative study on the carotenoid pigmentation of the zooplankton ok Lake Mararsseveen (Netherlands) and of Lac Pavin (Auvergne, France). II. Diurnal variations in carotenoid content. Comp. Biochem. Physiol. 60B: 59–62.

    Google Scholar 

  • Haworth, E. Y., 1980. Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol. Oceanogr. 25: 1093–1103.

    Google Scholar 

  • Head, E. J. H. & L. R. Harris, 1992. Chlorophyll and carotenoid transformation and destruction byCalanus spp. grazing on diatoms. Mar. Ecol. Prog. Ser. In Press.

  • Herring, P. J., 1968a. The carotenoid pigments ofDaphnia magna Straus — I. The pigments of animals fedChlorella pyrenoidosa and pure carotenoids. Comp. Biochem. Physiol. 24: 187–203.

    Google Scholar 

  • Herring, P. J., 1968b. The carotenoid pigments ofDaphnia magna Straus — II. Aspects of pigmentary metabolism. Comp. Biochem. Physiol. 24: 205–221.

    Google Scholar 

  • Hertzberg, S., S. Liaaen-Jensen & H. W. Siegelman, 1971. The carotenoids of blue-green algae. Phytochemistry 10: 3121–3127.

    Google Scholar 

  • Hessen, D. O. & K. Sorensen, 1990. Photoprotective pigmentation in alpine zooplankton populations. Aqua Fenn. 20: 165–170.

    Google Scholar 

  • Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr. 30: 1131–1143.

    Google Scholar 

  • Hilton, J., J. P. Lishman & P. V. Allen, 1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr. 31: 125–133.

    Google Scholar 

  • Hilton, J., J. P. Lishman, T. R. Carrick & P. V. Allen, 1991. An assessment of the sources of error in estimations of bulk sedimentary pigment concentrations and its implications for trophic status assessment. Hydrobiologia 218: 247–254.

    Google Scholar 

  • Honjo, S. & M. R. Roman, 1978. Marine copepod fecal pellets: production, preservation and sedimentation. J. mar. Res. 36: 45–57.

    Google Scholar 

  • Hurley, J. P. & D. E. Armstrong, 1990. Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnol. Oceanogr. 35: 384–398.

    Google Scholar 

  • Hurley, J. P. & D. E. Armstrong, 1991. Pigment preservation in lake sediments: a comparison of sedimentary environments in Trout Lake, Wisconsin. Can. J. Fish. aquat. Sci. 48: 472–486.

    Google Scholar 

  • Hurley, J. P. & C. J. Watras, 1992. Identification of bacteriochlorophylls in lakes via reverse-phase HPLC. Limnol. Oceanogr. 36: 307–315.

    Google Scholar 

  • Hurley, J. P., D. E. Armstrong & A. L. DuVall, 1992. Historical interpretation of pigment stratigraphy in Lake Mendota sediments. In Kitchell, J. F., ed. Food Web Management. Springer-Verlag. New York: 49–68.

    Google Scholar 

  • Jen, J. J. & G. Mackinney, 1970a. On the photodecomposition of chlorophyllin vitro — I. Reaction rates. Photochem. Photobiol. 11: 297–302.

    Google Scholar 

  • Jen, J. J. & G. Mackinney, 1970b. On the photodecomposition of chlorophyllin vitro — II. Intermediates and breakdown products. Photochem. Photobiol. 11: 303–308.

    Google Scholar 

  • Kerfoot, W. C., 1981. Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62: 216–233.

    Google Scholar 

  • Kitchell, J. F. & S. R. Carpenter, 1987. Piseivores, planktivores, fossils and phorbins. In Kerfoot, W. C. & A. Sih, eds. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England: 136–146.

  • Klein, B., W. W. C. Gieskes & G. G. Kraay, 1986.Oxyrrhis marina studied by H.P.L.C. analysis of algal pigments. J. Plankton Res. 8: 827–836. Digestion of chlorophylls and carotenoids by the marine protozoanOxyrrhis marina studied by H.P.L.C. analysis of algal pigments. J. Plankton Res. 8: 827–836.

    Google Scholar 

  • Kleppel, G. S., 1988, Plant and animal pigments as trophodynamic indicators. In Soule, D. F. & G. S. Kleppel, eds. Marine Organisms as Indicators. Springer-Verlag. New York: 73–90.

    Google Scholar 

  • Kleppel, G. S. & E. J. Lessard, 1992. Carotenoid pigments in microzooplankton. Mar. Ecol. Prog. Ser. 84: 211–218.

    Google Scholar 

  • Kleppel, G. S., L. Williams & R. E. Pieper, 1985. Diel variations in body carotenoid content and feeding activity in marine zooplankton assemblages. J. Plankton Res. 7: 569–580.

    Google Scholar 

  • Kleppel, G. S., D. V. Holliday & R. E. Pieper, 1991. Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol. Oceanogr. 36: 172–178.

    Google Scholar 

  • Kratz, T. K., T. M. Frost & J. J. Magnuson, 1987. Inferences from spatial and temporal variability in ecosystems: long-term zooplankton data from lakes. Am. Nat. 129: 830–846.

    Google Scholar 

  • Krinsky, N. I., 1979a. Carotenoid protection against oxidation. Pure Appl. Chem. 51: 649–660.

    Google Scholar 

  • Krinsky, N. I., 1979b. Carotenoid pigments: multiple mechanisms for coping with the stress of photosensitized oxidations. In Shilo, M. ed. Strategies of Microbial Life in Extreme Environments. Dahlem Konterenzen. Berlin: 163–177.

    Google Scholar 

  • Krinski, N. I. & S. M. Deneke, 1982. Interactions of oxygen and oxy-radicals with carotenoids. JNCI 69: 205–210.

    Google Scholar 

  • Lampitt, R. S., T. Noji & B. von Bodungen, 1990. What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol. 104: 15–23.

    Google Scholar 

  • Larson, C. P. S. & G. M. MacDonald, 1992. Lake morphometry, sediment mixing and the selection of sites for fine resolution paleoecological studies. Quat. Res.: In Press.

  • Leavitt, P. R., 1988. Experimental determination of carotenoid degradation. J. Paleolimnol. 1: 215–228.

    Google Scholar 

  • Leavitt, P. R. & S. R. Brown, 1988. Effects of grazing byDaphnia on algal carotenoids: implications for paleolimnology. J. Paleolimnol. 1: 201–214.

    Google Scholar 

  • Leavitt, P. R. & S. R. Carpenter, 1989. Effects of sediment mixing and benthic algal production on fossil pigment stratigraphies. J. Paleolimnol. 2: 147–158.

    Google Scholar 

  • Leavitt, P. R. & S. R. Carpenter, 1990a. Regulation of pigment sedimentation by photo-oxidation and herbivore grazing. Can. J. Fish. aquat. Sci. 47: 1166–1176.

    Google Scholar 

  • Leavitt, P. R. & S. R. Carpenter, 1990b. Aphotic pigment degradation in the hypolimnion: implications for sedimentation studies and paleolimnology. Limnol. Oceanogr. 35: 520–535.

    Google Scholar 

  • Leavitt, P. R. & D. L. Findlay, 1994. Calibration of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario, Can. J. Fish. aquat. Sci 50: Under review.

  • Leavitt, P. R., S. R. Carpenter & J. F. Kitchell, 1989. Wholelake experiments: the annual record of fossil pigments and zooplankton. Limnol. Oceanogr. 34: 700–717.

    Google Scholar 

  • Leavitt, P. R., P. R. Sanford, S. R. Carpenter, J. F. Kitchell & D. Benkowski, 1993. Annual fossil records of food-web manipulation. In S. R. Carpenter & J. F. Kitchell, eds. The Trophic Cascade in Lake Ecosystems. Cambridge University Press, New York: 278–309.

    Google Scholar 

  • Lee, W. L., 1966. Pigmentation of the marine isopodIdothea montereyenesis. Comp. Biochem. Physiol. 18: 17–36.

    Google Scholar 

  • Lopez, M. D. G., M. E. Huntley & P. F. Sykes, 1988. Pigment destruction byCalanus pacificus: impact on the estimation of water column fluxes. J. Plankton Res. 10: 715–734.

    Google Scholar 

  • Mantoura, R. F. C. & C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high performance liquid chromatography. Analyt. chim. Acta 151: 297–314.

    Google Scholar 

  • Mayzaud, P. & S. Razouls, 1992. Degradation of gut pigment during feeding by a subarctic copepod: importance of feeding history and digestive acclimation. Limnol. Oceanogr. 37: 393–404.

    Google Scholar 

  • Meriläinen, J. 1971. The recent sedimentation of diatom frustules in four meromictic lakes. Ann. Bot. Fenn. 8: 160–176.

    Google Scholar 

  • Moss, B., 1968. Studies on the degradation of chlorophylla and carotenoids in freshwaters. New Phytol. 67: 49–59.

    Google Scholar 

  • Owens, T. G. & P. G. Falkowski, 1982. Enzymatic degradation of chlorophylla by marine phytoplanktonin vitro. Phytochemistry 21: 979–984.

    Google Scholar 

  • Paerl, H. W., J. Tucker & P. T. Bland, 1984. Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnol. Oceanogr. 28: 847–857.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1981. Photosynthetic production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91: 366–382.

    Google Scholar 

  • Pierce, A. C., 1972. Estimating changes in aquatic secondary production over postglacial time. Ph.D. Thesis. State University of New York, Albany, New York, 86 pp.

    Google Scholar 

  • Redalge, D. G. & E. A. Laws, 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62: 73–79.

    Google Scholar 

  • Repeta, D. J., 1989. Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide. Geochim. Cosmochim. Acta 53: 699–707.

    Google Scholar 

  • Repeta, D. J. & R. B. Gagosian, 1981. Carotenoid transformation products in the upwelled waters off the Peruvian coast: suspended particulate, matter sediment trap material, and zooplankton fecal pellet analyses. In Bjoroy, M., ed. Advances in Organic Geochemistry 1981. Wiley & Sons. New York: 380–388.

    Google Scholar 

  • Repeta, D. J. & R. B. Gagosian, 1982. Carotenoid transformations in coastal marine waters. Nature 295: 51–54.

    Google Scholar 

  • Repeta, D. J. & R. B. Gagosian, 1984. Transformation reactions and recycling of carotenoids and chlorins in the Peru upwelling region (15°S, 75°W). Geochim. Cosmochim. Acta. 48: 1265–1277.

    Google Scholar 

  • Repeta, D. J. & R. B. Gagosian, 1987. Carotenoid diagenesis in recent marine sediments — 1. The Peru continental shelf (15°S, 75°W). Geochim. Cosmochim. Acta 51: 1001–1009.

    Google Scholar 

  • Ridout, P. S. & R. J. Morris, 1985. Short-term variations in the pigment composition of a spring phytoplankton bloom from an enclosed experiment. Mar. Biol. 87: 7–11.

    Google Scholar 

  • Ringelberg, J., 1980. Aspects of red pigmentation in zooplankton, especially copepods. In Kerfoot, W. C., ed. Evolution and Ecology of Zooplankton Communities. University of New England Press, Hanover: 91–97.

    Google Scholar 

  • Robbins, J.A., 1982. Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos. Hydrobiologia 92: 611–622.

    Google Scholar 

  • Ryberg, H., L. Axelson, B. Klockare & A. S. Sandelius, 1981. The function of carotenoids during chloroplast development. III. Protection of the prolamellar body and the enzymes for chlorophyll synthesis from photodestruction, sensitized by early forms of chlorophyll. In Akoyounoglou, A., ed. Photosynthesis V. Chloroplast Development. Bababan International Science Services. Philidelphia: 295–304.

    Google Scholar 

  • Sanger, J. E., 1988. Fossil pigments in paleoecology and paleolimnology. Palaeogeog. Palaeoclim. Palaeolimnol. 62: 343–359.

    Google Scholar 

  • Sanger, J. E. & E. Gorham, 1970. The diversity of pigments in lake sediments and its ecological significance. Limnol. Oceanogr. 15: 59–69.

    Google Scholar 

  • Sanger, J. E. & G. H. Crowl, 1979. Fossil pigments as a guide to the paleolimnology of Brown's Lake, Ohio. Quat. Res. 11: 342–352.

    Google Scholar 

  • Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. aquat. Sci. 44: 6–25.

    Google Scholar 

  • Schindler, D. W., R. W. Newbury, K. G. Beatty, J. Prokopowich, T. Ruszczynski & J. A. Dulton, 1980. Effects of a windstorm and forest fire on chemical losses from forested watersheds and on the quality of receiving streams. Can. J. Fish. aquat. Sci. 37: 328–334.

    Google Scholar 

  • Shuman, F. R. & C. J. Lorenzen, 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20: 580–586.

    Google Scholar 

  • Simpson, K. L. & C. O. Chichester, 1981. Metabolism and nutritional significance of carotenoids. Ann. Rev. Nutr. 1: 351–374.

    Google Scholar 

  • Simpson, K. L., T-C. Lee, D. B. Rodriguez & C. O. Chichester, 1976. Metabolism in senescent and stored tissues. In Goodwin, T. W., ed. Chemistry and Biochemistry of Plant Pigments. Vol. I. Academic Press. New York: 797–842.

    Google Scholar 

  • Sistrom, W. R., M. Griffiths & R. Y. Stanier, 1956. The biology of a photosynthetic bacterium which lacks colored carotenoids. J. Cell. Comp. 48: 473–515.

    Google Scholar 

  • SooHoo, J. B. & D. A. Kiefer, 1982a. Vertical distribution of pheopigments — I. A Simple grazing and photooxidative scheme for small particles. Deep-Sea Res. 29: 1539–1551.

    Google Scholar 

  • SooHoo, J. B. & D. A. Kiefer, 1982b. Vertical distribution of pheopigments — II. Rates of production and kinetics of photooxidation. Deep-Sea Res. 29: 1553–1563.

    Google Scholar 

  • Sun, M-Y., C. Lee & R. C. Aller, 1993. Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim. Cosmochim. Acta 57: 147–157.

    Google Scholar 

  • Swain, E. B., 1985. Measurement and interpretation of sedimentary pigments. Freshwat. Biol. 15: 53–75.

    Google Scholar 

  • Tett, P., 1982. The Loch Eil project: planktonic pigments in sediments from Loch Eil and the Firth of Lorne. J. exp. mar. Biol. Ecol. 56: 1101–1114.

    Google Scholar 

  • Vallentyne, J. R., 1957. Carotenoids in 20 000-year old sediment from Searles Lake, California. Arch. Biochem. Biophys. 70: 29–34.

    Google Scholar 

  • Van Heukeleum, L., A. J. Lewitus, T. M. Kana & N. E. Craft, 1992. High-performance liquid chromatography of phytoplankton pigments using a polymeric reversed-phase C18 column. J. Phycol. 28: 867–872.

    Google Scholar 

  • Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.

    Google Scholar 

  • Wang, R. & R. J. Conover, 1986. Dynamics of gut pigment in the copepodTemora longicornis and the determination ofin situ grazing rates. Limnol. Oceanogr. 31: 867–877.

    Google Scholar 

  • Watts, C. D. & J. R. Maxwell, 1977. Carotenoid diagenesis in a marine sediment. Geochim. Cosmochim. Acta 41: 493–497.

    Google Scholar 

  • Welschmeyer, N. A. & C. J. Lorenzen, 1985a. Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30: 1–21.

    Google Scholar 

  • Welschmeyer, N. A. & C. J. Lorenzen, 1985b. Role of herbivory in controlling phytoplankton abundance: annual pigment budget for a temperate marine fjord. Mar. Biol. 90: 75–86.

    Google Scholar 

  • Welschmeyer, N. A., A. E. Copping, M. Vernet & C. J. Lorenzen, 1984. Diel fluctuation in zooplankton grazing rate as determined from the downward vertical flux of pheopigments. Mar. Biol. 83: 263–270.

    Google Scholar 

  • Wetzel, R. G., 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Ver. int. Verein. Theor. Ang. Limnol. 21: 369–381.

    Google Scholar 

  • Wright, S. W., S. W. Jeffery, R. F. C. Mantoura, C. A. Llewellyn, T. Bjørnland, D. Repeta & N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77: 183–196.

    Google Scholar 

  • Yacobi, Y. Z., R. F. C. Mantoura & C. A. Llewellyn. 1991. The distribution of chlorophylls, carotenoids and their breakdown products in Lake Kineret (Israel) sediments. Freshwat. Biol. 26: 1–10.

    Google Scholar 

  • Yamamoto, H. Y. & C. O. Chichester, 1965. Dark incorporation of18O2 into antheraxanthin by bean leaf. Biochim. Biophys. Acta 109: 303–305.

    Google Scholar 

  • Zechmeister, L., 1962.Cis-trans Isomeric Carotenoids, Vitamina and Arylpolyenes. Academic Press. New York.

    Google Scholar 

  • Züllig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol. Oceanogr. 26: 970–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leavitt, P.R. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9, 109–127 (1993). https://doi.org/10.1007/BF00677513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00677513

Key words

Navigation