Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Acute Q fever is commonly resolved without an antibiotic regimen, but a primary infection may develop into a chronic infection in a minority of cases. Coxiella burnetii, the causative agent of Q fever, is known to infect macrophages both in vitro and in vivo. It has been observed that the intracellular survival of C. burnetii requires the subversion of the microbicidal properties of macrophages. Adaptive immunity is also essential to cure C. burnetii infection, as demonstrated by clinical studies and animal models. Indeed, the control of infection in patients with primary Q fever involves a systemic cell-mediated immune response and granuloma formation with an essential role for interferon-γ in the protection against C. burnetii. In contrast, chronic Q fever is characterized by defective cell-mediated immunity with the defective formation of granulomas and over-production of interleukin-10, an immunoregulatory cytokine. Finally, epidemiological data demonstrate that age and gender are risk factors for Q fever. The analysis of gene expression programs in mice reveals the importance of sex-related genes in C. burnetii infection because only 14% of the modulated genes are sex-independent, while the remaining 86% are differentially expressed in males and females. These results open a new field to understand how host metabolism controls C. burnetii infection in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akporiaye ET, Stefanovich D, Tsosie V et al (1990) Coxiella burnetii fails to stimulate human neutrophil superoxide anion production. Acta Virol 34:64–70

    PubMed  CAS  Google Scholar 

  • Andoh M, Naganawa T, Hotta A et al (2003) SCID mouse model for lethal Q fever. Infect Immun 71:4717–4723

    Article  PubMed  CAS  Google Scholar 

  • Andoh M, Zhang G, Russell-Lodrigue KE et al (2007) T cells are essential for bacterial clearance, and γ interferon, tumor necrosis factor α, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun 75:3245–3255

    Article  PubMed  CAS  Google Scholar 

  • Ayres JG, Flint N, Smith EG et al (1998) Post-infection fatigue syndrome following Q fever. QJM 91:105–123

    Article  PubMed  CAS  Google Scholar 

  • Benoit M, Barbarat B, Bernard A et al (2008) Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 38:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Brennan RE, Russell K, Zhang G et al (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675

    Article  PubMed  CAS  Google Scholar 

  • Brouqui P, Tissot-Dupont H, Drancourt M et al (1993) Chronic Q fever. Ninety-two cases from France, including 27 cases without endocarditis. Arch Intern Med 153:642–648

    Article  PubMed  CAS  Google Scholar 

  • Capo C, Zaffran Y, Zugun F et al (1996a) Production of interleukin-10 and transforming growth factor beta by peripheral blood mononuclear cells in Q fever endocarditis. Infect Immun 64:4143–4147

    PubMed  CAS  Google Scholar 

  • Capo C, Zugun F, Stein A et al (1996b) Upregulation of tumor necrosis factor-α and interleukin-1β in Q fever endocarditis. Infect Immun 64:1638–1642

    PubMed  CAS  Google Scholar 

  • Capo C, Amirayan N, Ghigo E et al (1999) Circulating cytokine balance and activation markers of leucocytes in Q fever. Clin Exp Immunol 115:120–123

    Article  PubMed  CAS  Google Scholar 

  • Clifton DR, Goss RA, Sahni SK et al (1998) NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc Natl Acad Sci U S A 95:4646–4651

    Article  PubMed  CAS  Google Scholar 

  • Collins H, Kaufmann SHE (2002) Acquired immunity against bacteria. In: Kaufmann SHE, Sher A, Ahmed R (eds) Immunology of infectious diseases. ASM Press, Washington, pp 207–221

    Google Scholar 

  • Delaby A, Espinosa L, Lepolard C et al (2010) 3D reconstruction of granulomas from transmitted light images implemented for long-time microscope applications. J Immunol Methods 360:10–19

    Article  PubMed  CAS  Google Scholar 

  • Delaby A, Gorvel L, Espinosa L et al (2012) Defective monocyte dynamics in Q fever granuloma deficiency. J Infect Dis 205:1086–1094

    Google Scholar 

  • Dellacasagrande J, Capo C, Raoult D et al (1999) IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162:2259–2265

    PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Capo C et al (2000a) Coxiella burnetii survives in monocytes from patients with Q fever endocarditis: involvement of tumor necrosis factor. Infect Immun 68:160–164

    Article  PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Moulin PA, Guilianelli C et al (2000b) Reduced transendothelial migration of monocytes infected by Coxiella burnetii. Infect Immun 68:3784–3786

    Article  PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Raoult D et al (2002) IFN-γ-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence. J Immunol 169:6309–6315

    PubMed  CAS  Google Scholar 

  • Desnues B, Imbert G, Raoult D et al (2009) Role of specific antibodies in Coxiella burnetii infection of macrophages. Clin Microbiol Infect 15(Suppl 2):161–162

    Article  PubMed  CAS  Google Scholar 

  • Fenollar F, Fournier PE, Carrieri P et al (2001) Risks factors and prevention of Q fever endocarditis. Clin Infect Dis 33:312–316

    Article  PubMed  CAS  Google Scholar 

  • Fournier PE, Marrie TJ, Raoult D (1998) Diagnosis of Q fever. J Clin Microbiol 36:1823–1834

    PubMed  CAS  Google Scholar 

  • Ghigo E, Capo C, Tung CH et al (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-γ mediates its restoration and bacterial killing. J Immunol 169:4488–4495

    PubMed  CAS  Google Scholar 

  • Ghigo E, Honstettre A, Capo C et al (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J Infect Dis 190:1767–1772

    Article  PubMed  CAS  Google Scholar 

  • Ghigo E, Pretat L, Desnues B et al (2009) Intracellular life of Coxiella burnetii in macrophages. Ann N Y Acad Sci 1166:55–66

    Article  PubMed  CAS  Google Scholar 

  • Harris RJ, Storm PA, Lloyd A et al (2000) Long-term persistence of Coxiella burnetii in the host after primary Q fever. Epidemiol Infect 124:543–549

    Article  PubMed  CAS  Google Scholar 

  • Honstettre A, Imbert G, Ghigo E et al (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187:956–962

    Article  PubMed  CAS  Google Scholar 

  • Honstettre A, Ghigo E, Moynault A et al (2004) Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. J Immunol 172:3695–3703

    PubMed  CAS  Google Scholar 

  • Houpikian P, Raoult D (2005) Blood culture-negative endocarditis in a reference center: etiologic diagnosis of 348 cases. Medicine (Baltimore) 84:162–173

    Article  Google Scholar 

  • Houpikian P, Habib G, Mesana T et al (2002) Changing clinical presentation of Q fever endocarditis. Clin Infect Dis 34:E28–E31

    Article  PubMed  Google Scholar 

  • Howe D, Mallavia LP (1999) Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells. Infect Immun 67:3236–3241

    PubMed  CAS  Google Scholar 

  • Humphres RC, Hinrichs DJ (1981) Role of antibody in Coxiella burnetii infection. Infect Immun 31:641–645

    PubMed  CAS  Google Scholar 

  • Izzo AA, Marmion BP (1993) Variation in interferon-γ responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin Exp Immunol 94:507–515

    Article  PubMed  CAS  Google Scholar 

  • Izzo AA, Marmion BP, Worswick DA (1988) Markers of cell-mediated immunity after vaccination with an inactivated, whole-cell Q fever vaccine. J Infect Dis 157:781–789

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto RA, Rozmiarek H, Larson EW (1978) Experimental Q fever infection in congenitally athymic nude mice. Infect Immun 22:69–71

    PubMed  CAS  Google Scholar 

  • Koster FT, Williams JC, Goodwin JS (1985a) Cellular immunity in Q fever: specific lymphocyte unresponsiveness in Q fever endocarditis. J Infect Dis 152:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Koster FT, Williams JC, Goodwin JS (1985b) Cellular immunity in Q fever: modulation of responsiveness by a suppressor T cell-monocyte circuit. J Immunol 135:1067–1072

    PubMed  CAS  Google Scholar 

  • Leone M, Honstettre A, Lepidi H et al (2004) Effect of sex on Coxiella burnetii infection: protective role of 17β-estradiol. J Infect Dis 189:339–345

    Article  PubMed  CAS  Google Scholar 

  • Leone M, Bechah Y, Meghari S et al (2007) Coxiella burnetii infection in C57BL/6 mice aged 1 or 14 months. FEMS Immunol Med Microbiol 50:396–400

    Article  PubMed  CAS  Google Scholar 

  • Lepidi H, Houpikian P, Liang Z et al (2003) Cardiac valves in patients with Q fever endocarditis: microbiological, molecular, and histologic studies. J Infect Dis 187:1097–1106

    Article  PubMed  Google Scholar 

  • Madariaga MG, Rezai K, Trenholme GM et al (2003) Q fever: a biological weapon in your backyard. Lancet Infect Dis 3:709–721

    Article  PubMed  Google Scholar 

  • Maltezou HC, Raoult D (2002) Q fever in children. Lancet Infect Dis 2:686–691

    Article  PubMed  Google Scholar 

  • Marmion BP, Ormsbee RA, Kyrkou M et al (1990) Vaccine prophylaxis of abattoir-associated Q fever: eight years’ experience in Australian abattoirs. Epidemiol Infect 104:275–287

    Article  PubMed  CAS  Google Scholar 

  • Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553

    PubMed  CAS  Google Scholar 

  • Meghari S, Honstettre A, Lepidi H et al (2005) TLR2 is necessary to inflammatory response in Coxiella burnetii infection. Ann N Y Acad Sci 1063:161–166

    Article  PubMed  Google Scholar 

  • Meghari S, Desnues B, Capo C et al (2006) Coxiella burnetii stimulates production of RANTES and MCP-1 by mononuclear cells: modulation by adhesion to endothelial cells and its implication in Q fever. Eur Cytokine Netw 17:253–259

    PubMed  CAS  Google Scholar 

  • Meghari S, Bechah Y, Capo C et al (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4:e23

    Article  PubMed  Google Scholar 

  • Pellegrin M, Delsol G, Auvergnat JC et al (1980) Granulomatous hepatitis in Q fever. Hum Pathol 11:51–57

    Article  PubMed  CAS  Google Scholar 

  • Penttila IA, Harris RJ, Storm P et al (1998) Cytokine dysregulation in the post-Q-fever fatigue syndrome. QJM 91:549–560

    Article  PubMed  CAS  Google Scholar 

  • Puissegur MP, Botanch C, Duteyrat JL et al (2004) An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 6:423–433

    Article  PubMed  CAS  Google Scholar 

  • Raoult D (1990) Host factors in the severity of Q fever. Ann N Y Acad Sci 590:33–38

    Article  PubMed  CAS  Google Scholar 

  • Raoult D, Raza A, Marrie TJ (1990) Q fever endocarditis and other forms of chronic Q fever. In: Marrie TJ (ed) Q fever. The disease. CRC Press, Boca Raton, pp 3784–3786

    Google Scholar 

  • Raoult D, Marrie TJ, Mege JL (2005) Natural history and pathophysiology of Q fever. Lancet Infect Dis 5:219–226

    Article  PubMed  CAS  Google Scholar 

  • Read AJ, Erickson S, Harmsen AG (2010) Role of CD4+ and CD8+ T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect Immun 78:3019–3026

    Article  PubMed  CAS  Google Scholar 

  • Rolain JM, Mallet MN, Raoult D (2003) Correlation between serum doxycycline concentrations and serologic evolution in patients with Coxiella burnetii endocarditis. J Infect Dis 188:1322–1325

    Article  PubMed  CAS  Google Scholar 

  • Sabatier F, Dignat-George F, Mege JL et al (1997) CD4+ T-cell lymphopenia in Q fever endocarditis. Clin Diagn Lab Immunol 4:89–92

    PubMed  CAS  Google Scholar 

  • Shannon JG, Heinzen RA (2009) Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 43:138–148

    Article  PubMed  CAS  Google Scholar 

  • Shannon JG, Howe D, Heinzen RA (2005) Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A 102:8722–8727

    Article  PubMed  CAS  Google Scholar 

  • Srigley JR, Vellend H, Palmer N et al (1985) Q-fever. The liver and bone marrow pathology. Am J Surg Pathol 9:752–758

    Article  PubMed  CAS  Google Scholar 

  • Textoris J, Ban LH, Capo C et al (2010) Sex-related differences in gene expression following Coxiella burnetii infection in mice: potential role of circadian rhythm. PLoS One 5:e12190

    Article  PubMed  Google Scholar 

  • Tissot-Dupont H, Raoult D, Brouqui P et al (1992) Epidemiologic features and clinical presentation of acute Q fever in hospitalized patients: 323 French cases. Am J Med 93:427–434

    Article  PubMed  CAS  Google Scholar 

  • Voigt JJ, Delsol G, Fabre J (1983) Liver and bone marrow granulomas in Q fever. Gastroenterology 84:887–888

    PubMed  CAS  Google Scholar 

  • Waag DM, England MJ, Bolt CR et al (2008) Low-dose priming before vaccination with the phase I chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii. Clin Vaccine Immunol 15:1505–1512

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Dobson ME, Samuel JE et al (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206

    PubMed  CAS  Google Scholar 

  • Yoshiie K, Matayoshi S, Fujimura T et al (1999) Induced production of nitric oxide and sensitivity of alveolar macrophages derived from mice with different sensitivity to Coxiella burnetii. Acta Virol 43:273–278

    PubMed  CAS  Google Scholar 

  • Zamboni DS, Rabinovitch M (2003) Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 71:1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Zamboni DS, Campos MA, Torrecilhas AC et al (2004) Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 279:54405–54415

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Russell-Lodrigue KE, Andoh M et al (2007) Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 179:8372–8380

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Mege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Capo, C., Mege, JL. (2012). Role of Innate and Adaptive Immunity in the Control of Q Fever. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_14

Download citation

Publish with us

Policies and ethics