Skip to main content

Preparative Techniques for Transmission Electron Microscopy and Confocal Laser Scanning Microscopy of Lichens

  • Chapter
Protocols in Lichenology

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

Ultrastructural study of lichen symbionts can provide valuable information about symbiotic performance complementary to that obtained using other techniques (Lallemant et al. 1986). Transmission Electron Microscopy (TEM) was first used to describe the cellular organelles of both symbionts (Jacobs and Ahmadjian 1969; Boissière 1972; Galun et al. 1970, 1974; Peveling 1973, 1974, 1976; Ascaso and Galvan 1975, 1976). Later, different aspects of lichen symbiosis were studied, for example cellular membranes and cell wall with the freeze-etching electron microscopy technique (Ellis and Brown 1972; Peveling and Robenek 1980; Ascaso et al. 1985; Honegger 1986a; Rapsch et al. 1986). TEM has contributed to the understanding of different types of mycobiont-photobiont relationships in lichens, e.g. by observing the physical contacts between symbionts (for reviews see Honegger 1984, 1985, 1986b). The study of storage bodies in both symbionts provides indirect information on biotrophic relationships (Valladares and Ascaso 1994). Some authors have described the variability of lichen ultrastructure in relation to season or environment (Holopainen 1982; Scott and Larson 1986; Fiechter and Honegger 1988; Balaguer et al. 1999). In some investigations, TEM techniques have revealed structural changes due to different experimental conditions, ranging from desiccation to environmental pollution (Eversman and Sigal 1984, 1987; Ascaso et al. 1986, 1988; Brown et al. 1987, 1988; Balaguer et al. 1996, 1997; Tarhanen et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos WB, White JG, Fordham M (1987) Use of confocal imaging in the study of biological structure. Appl Optics 26:3239-3234

    Google Scholar 

  • Ascaso C, Galvan J (1975) Concentric bodies in three lichen species. Arch Microbiol 105:129–130

    Article  Google Scholar 

  • Ascaso C, Galvan J (1976) The Ultrastructure of the symbionts of Rhizocarpon geographicum, Parmelia conspersa and Umbilicaria pustulata growing under dryness conditions. Protoplasma 87:409–418

    Article  Google Scholar 

  • Ascaso C, Brown DH, Rapsch S (1985) Ultrastructural studies of desiccated lichens. In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 259–274

    Chapter  Google Scholar 

  • Ascaso C, Brown DH, Rapsch S (1986) The ultrastructure of the phycobiont of desiccated and hydrated lichens. Lichenologist 18:37–46

    Article  Google Scholar 

  • Ascaso C, Brown DH, Rapsch S (1988) The effect of desiccation on pyrenoid structure in the oceanic lichen Parmelia laevigata. Lichenologist 20:31–39

    Article  Google Scholar 

  • Ascaso C, Valladares F, De los Ríos A (1995) New ultrastructural aspects of pyrenoids on the lichen photobiont Trebouxia (Microthamniales, Chlorophyta). J Phycol 31: 114–119

    Article  Google Scholar 

  • Ascaso C, Wierzchos J, De los Ríos A (1998) In situ investigations of lichens invading rocks at cellular and enzymatic level. Symbiosis 24:221–234

    Google Scholar 

  • Bacallao R, Kiai K, Jesaitis L (1995) Guiding principles of specimen preservation for confocal fluorescence microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Plenum Press, New York, pp 311–323

    Google Scholar 

  • Balaguer L, Valladares F, Ascaso C, Barnes JD, De los Rios A, Manrrique E, Smith EC (1996) Potential effects of rising trophospheric concentrations of CO2 and O3 on green algal lichens. New Phytol 132:641–652

    Article  CAS  Google Scholar 

  • Balaguer L, Manrique E, Ascaso C (1997) Predictability of the combined effects of sulphur dioxide and nitrate on the green-algal lichen Ramalina farinacea. Can J Bot 75: 1836–1842

    Article  CAS  Google Scholar 

  • Balaguer L, Manrique E, De los Ríos A, Ascaso C, Barnes JD, Palmqvist K, Forham M (1999) Long term response of the green-algal lichen Parmelia caperata to a naturally CO2 enriched atmosphere. Oecologia 119:166–174

    Article  Google Scholar 

  • Boissiere MC (1972) Cytologie du Peltigera canina (L.) Willd. en microscopie électronique: I. Premières observations. Rev Gen Bot 79:167–185

    Google Scholar 

  • Brown DH, Ascaso C, Rapsch S (1987) Ultrastructural changes in the pyrenoid of the lichen Parmelia sulcata stored under controlled conditions. Protoplasma 136:136–144

    Article  Google Scholar 

  • Brown DH, Ascaso C, Rapsch S (1988) Effects of light and dark on the ultrastructure of lichen algae. Ann Bot 62:625–632

    Google Scholar 

  • Butt TQ, Hoch HC, Staples RC, Leger J St (1989) Use of fluorochromes in the study of fungal cytology and differentiation. Exp Mycol 13:303–320

    Article  CAS  Google Scholar 

  • Culberson CC, Kristinsson H (1970) A standard method for the identification of lichen products. J Chom 46:85–93

    Article  CAS  Google Scholar 

  • De los Rios A, Ascaso C (1996). Changes in the photobiont related to the hydrated status of the lichen thallus. IAL 3 Progress and problems in lichenology in the nineties, Abstract book. pp. 72.

    Google Scholar 

  • De los Rios A, Ascaso C, Wierzchos J (1999). New prospects in the study of lichens with different state of hydration motivated by means of the combination of low temperature scanning electron microscopy and confocal laser scanning microscopy. Int Microbiol 2:251–257

    PubMed  Google Scholar 

  • De los Rios A., Ascaso C, Grube M (2001) Infection mechanisms of lichenicolous fungi studied by various microscopic techniques. Bibliotheca lichenologica (in press)

    Google Scholar 

  • Dykstra MJ (1992) Biological electron micoscopy. Theory, techniques and troubleshooting. Plenum Press, New York.

    Google Scholar 

  • Ellis EA, Brown RM Jr (1972) Freeze-etch ultrastructure of Parmelia caperata (L.) Ach. Trans. Amer. Microsc. Soc. 91:411–421

    Article  Google Scholar 

  • Eversman S, Sigal LL (1984) Ultrastructural effects of peroxyacetyl nitrate (PAN) on two lichen species. Bryologist 87:112–118

    Article  CAS  Google Scholar 

  • Eversman S, Sigal LL (1987) Effects of SO2, O3 and SO2 and O3 in combination on photosynthesis and ultrastructure of two lichen species. Can J Bot 65:1806–1818

    Article  CAS  Google Scholar 

  • Fiechter E, Honegger R (1988) Seasonal variations in the fine structure of Hypogymnia physodes (lichenized Ascomycetes) and its Trebouxia photobiont. Plant Syst Evol 158:249–263

    Article  Google Scholar 

  • Galun M, Paran N, Ben-Shaul Y (1970) Electron microscopic study of the lichen Dermatocarpon hepaticum (ach.) Th. Fr. Protoplasma 73:457–468

    Article  Google Scholar 

  • Galun M, Behr L, Ben-Shaul Y (1974) Evidence for protein content in concentric bodies of lichenized fungi. J Microscopie 19:193–196

    Google Scholar 

  • Grube M, Matzer M (1997) Taxonomic concepts of lichenicolous Arthonia species. In: Turk R and Zorer R (eds). Progress and Problems in Lichenology in the nineties-IAL3, Bibliotheca lichenologica 68. J Cramer in der Gebr Bornträger Verlagsbuchhandlung, Berlin, Stuttgart, 1–17.

    Google Scholar 

  • Grube M, de los Rios A (2001) Observations in Biatoropsis usnearum (lichenicolous heterobasidiomycetes) and other gall-forming lichenicolous fungi using different microscopic techniques. Mycological Research 105 (in press)

    Google Scholar 

  • Holopainen TH (1982) Summer versus winter condition of the ultrastructure of the epiphytic lichens, Bryoria capillaris and Hypogymnia physodes in central Finland. Annales Botanici Fenici 19:39–52

    Google Scholar 

  • Halpern S, Quintana C (1989) Two simple devices for quick-freezing and low temperature embedding. Biol Cell 67:10a.

    Google Scholar 

  • Honegger R (1984) Cytological aspects of the mycobiont-phycobiont relationship in lichens. Haustorial types, phycobiont cell walls types, and the ultrastructure of cell wall surface layers in some cultured and symbiotic myco-and phycobionts. Lichenologist 16:111–127

    Article  Google Scholar 

  • Honegger R (1985) Fine structure of different types of symbiotic relationships in lichens. In: Brown DH (ed.) Lichen physiology and cell biology. Plenum Press, New York, pp 287–305

    Chapter  Google Scholar 

  • Honegger R (1986a) Ultrastructural studies in lichens I. Haustorial types and their frequencies in a range of lichens with trebouxoid phycobionts. New Phytol 103: 785–789

    Article  Google Scholar 

  • Honegger R (1986b) Ultrastructural studies in lichens II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. New Phytol 103:797–808

    Article  CAS  Google Scholar 

  • Honegger R, Peter M (1994) Routes of solute translocation and the location of water in heteromerous lichens visualized with cryotechniques in Light and Electron Microscopy. Symbiosis 16:167–186.

    Google Scholar 

  • Honegger R, Peter M, Scherrer S (1996) Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190:221–232

    Article  Google Scholar 

  • Jacobs JB, Ahmadjian V (1969) The ultrastructure of lichens. I. A general survey. I Phycol 5:227–240

    Article  CAS  Google Scholar 

  • Janson S, Rai AR, Bergman B (1993) The marine lichen Lichina confinis (O.F. Müll.) C. Ag.: ultrastructure and localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose 1,5-biphosphate carboxylase/oxygenase in the cyanobiont. New Phytol 124:149–160

    Article  CAS  Google Scholar 

  • Known YH, Wells KS, Hoch HC (1993) Fluorescence confocal microscopy: applications in fungal cytology. Mycologia 85:721–733

    Article  Google Scholar 

  • Lallemant R, Boissiere JC, Boissiere MC, Leclerc JC, Velly P, Wagner J (1986) Le symbiose lichenique: approches nouvelles. Bull Soc Mycol Fr 133:41–79

    Google Scholar 

  • Mariac C, Rougier M, Gaude T, Dumas C (1992) Effects of fixatives on the antigenicity of Brassica S-locus specific glycoproteins and rapid immunolocalization by using the tissue print technique. Protoplasma 166°:223–227

    Article  Google Scholar 

  • Minsky M (1961) Microscopy apparatus. U.S. Patent 3013467.

    Google Scholar 

  • Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138

    Article  Google Scholar 

  • Palmqvist K, De los Rios A, Ascaso C, Samuelsson G (1997) Photosynthetic carbon acquisition in the lichen photobiont Coccomyxa and Trebouxia (Chlorophyta). Physiol Plant 101:67–76

    Article  CAS  Google Scholar 

  • Peveling E (1973) Fine structure. In: Ahmadjian V, Hale M (eds) The lichens. Academic Press, New York, pp147–182

    Chapter  Google Scholar 

  • Peveling E (1974) Biogenesis of cell organelles during the differentiation of the lichen thallus. Port Acta Biol 14:357–368

    Google Scholar 

  • Peveling E (1976) Investigations into the ultrastructure of lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 17–26

    Google Scholar 

  • Peveling E, Robenek H (1980) The plasmalemma structure in the phycobiont Trebouxia at different stages of humidity of a lichen thallus. New Phytol 84:371–374

    Article  Google Scholar 

  • Quintana C (1991a) X-ray microanalysis of cell nuclei. J. Electron Microsc. Tchn. 18: 411–423

    Article  CAS  Google Scholar 

  • Quintana C (1991b) The use of low temperature embedding in elemental microanalysis, immunocytochemistry and ultrastrutural studies. Abs Colloque Franco-Iberique Microscopie Electronique, Université de Barcelona, (ed.). Barcelona (Spain), pp 58–59.

    Google Scholar 

  • Quintana C (1992) Development of a new cryosystem of freeze-substitution and cryoembedding for processing biological samples. In: Rios A, Arias JM, Megias L (eds) Electron microscopy 92, vol. 1. Universidad de Granada, Granada (Spain), pp 363–364

    Google Scholar 

  • Quintana C (1994) Cryofixation, cryosubstitution, cryoembedding for ultrastructural, immunocytochemical and microanalytical studies. Micron 25:63–99

    Article  PubMed  CAS  Google Scholar 

  • Rapsch S, Ascaso C, Cifuentes B (1986) Effects of the lipoxygenase enzyme on morphological changes of the EF face in the plasmalemma of the Evernia prunastri phycobiont. Cryptogamie Bryol Lichénol 7:257–266

    CAS  Google Scholar 

  • Reynolds S (1963) The use of lead citrate at high pH as electron-opaque stain in electron microscopy. J Cell Biol 17:200–211

    Article  Google Scholar 

  • Robards AW, Sleytr UB (1985) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy Vol 10. Elsevier Science Publishers B, Amsterdam, pp 1–551.

    Google Scholar 

  • Robards AW, Wilson AJ (1993) Procedures in electron microscopy. Wiley, Chicester.

    Google Scholar 

  • Rost FWD (1995) Fluorescence microscopy. Vol II. Cambridge University Press, Cambridge.

    Google Scholar 

  • Scott MG; Larson DW (1986) The effect of winter field conditions on the distribution of two species of Umbilicaria. II. Fine structure and storage bodies distribution. New Phytol 102:313–326

    Article  Google Scholar 

  • Sitte H, Fell H, Hobli W, Kleber H, Neumann K (1977) Fast freezing device. J Microscopy 111:35

    Article  Google Scholar 

  • Tarhanen S, Holopainen T, Oskanen J (1997) Ultrastructural changes and electrolyte leakage from ozone fumigated epiphytic lichens. Annals of Botany 80:611–621

    Article  CAS  Google Scholar 

  • Valladares F, Ascaso C (1994) Quantitative approach to the fine structure of both symbionts on nine Umbilicaria species. Protoplasma 178:168–178

    Article  Google Scholar 

  • Wierzchos f, Ascaso C (1994) Application of backscattered electron imaging to the study of the lichen rock interface. J Microscopy 175:54–59

    Article  Google Scholar 

  • Wright SJ, Centonze VE, Stricker SA, DeVries PJ, Paddock SW, Schatten G (1993). Introduction to confocal microscopy and three-dimensional reconstruction. In: Methods in cell Biology vol. 38. Academic Press, Boston, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de los Ríos, A., Ascaso, C. (2002). Preparative Techniques for Transmission Electron Microscopy and Confocal Laser Scanning Microscopy of Lichens. In: Kranner, I.C., Beckett, R.P., Varma, A.K. (eds) Protocols in Lichenology. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56359-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56359-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41139-0

  • Online ISBN: 978-3-642-56359-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics