Skip to main content

The Beneficial Effect of Mycorrhizae on N Utilization by the Host-Plant: Myth or Reality?

  • Chapter
Mycorrhiza

The chapter ‘The Beneficial Effect of Mycorrhizae on N Utilisation by the Host-Plant: Myth or Reality?” aims at summarizing the present knowledge about the role of three main types of mycorrhizal associations made by ericoid, ectomycorrhizal and arbuscular mycorrhizal fungi in the nitrogen nutrition of the host plant. The capacities of these ectomycorrhizal fungi to influence N mineralization in different ecosystems and N uptake by the mycorrhizal plant are first presented. Then, labelling experiments and molecular studies that have been carried out so far to highlight N transfer from the fungal cells to the host cells are described. Finally, data enabling us to assess the importance of N transfer in the N budget of the mycorrhizal plants in “real life” are considered. From the available data in the literature, it can be concluded that the mycorrhizal fungi are able to use a variety of N sources, as their host-plants, although individual differences exist among fungal and plant capacities. Also, clear experimental evidence exists indicating that N taken up by the hyphae in the external medium is translocated throughout the hyphae towards the mycorrhizal root, leaves the fungal cells and is finally taken up by the root cell. The need for further investigation of the elucidation of the molecular mechanisms involved in the exchange of N-containing molecules at the level of root-fungus interface as well as how these mechanisms are regulated is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol 112:55-60

    CAS  Google Scholar 

  • Andersson P, Berggren D (2005) Amino acids, total organic and inorganic nitrogen in forest floor soil solution at low and high nitrogen input. Water Air Soil Pollut 162:369-384

    CAS  Google Scholar 

  • Arnebrandt K, Ek H, Finlay R, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. Seedlings inoculated with Frankia sp. and Pinus contorta Doug. Ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124:231-242

    Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561-582

    CAS  Google Scholar 

  • Aubert M, Bureau F, Vinceslas-Akpa M (2005) Sources of spatial and temporal variability of inorganic nitrogen in pure and mixed deciduous temperate forests. Soil Biol Biochem 37:67-79

    CAS  Google Scholar 

  • Bago B, Shachar-Hill Y, Pfeffer PE (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4-8

    CAS  Google Scholar 

  • Bailly J, Debaud JC, Verner MC, Plassard C, Chalot M, Marmeisse R, Fraissinet-Tachet L (2007) How does a symbiotic fungus modulate expression of its host-plant nitrite reductase? New Phytol 175:155-165.

    CAS  PubMed  Google Scholar 

  • Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic-enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol 101:469-486

    CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient availability, a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Bedell JP, Garnier A, Pireaux JC, Chalot M, Brun A, Botton B (1994) Study of enzymes involved in nitrogen-metabolism of Douglas-Laccaria laccata ectomycorrhizas. Acta Bot Gallica 141:483-490

    CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid mycorrhizal fungi. Soil Biol Biochem 28:1602-1612

    Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble-phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348-1354

    CAS  Google Scholar 

  • Bendjia M, Rikirsch E, Müller T, Morel M, Corratgé C, Zimmermann S, Chalot M, Frommer WB, Wipf D (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di-and tri-peptide transporters (HcPTR2A and B). New Phytol 170:401-410

    Google Scholar 

  • Bennett JN, Prescott CE (2004) Organic and ionrganic nitrogen nutrition of western red cedar, western hemlock and sala in minearl N-limited cedar-hemlock forests. Oecologia 141:468-476

    PubMed  Google Scholar 

  • Botton B, Dell B (1994) Expression of glutamate dehydrogenase and aspartate aminotransferase in eucalypt ectomycorrhizas. New Phytol 126:249-257

    CAS  Google Scholar 

  • Boukcim H, Plassard C (2003) Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. J Plant Physiol 160:1211-1218

    CAS  PubMed  Google Scholar 

  • Brandes B, Godbold D, Kuhn A, Jentschke G (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytol 140:735-743

    CAS  Google Scholar 

  • Burke RM, Cairney JWG (1998) Carbohydrate oxidases in ericoid and ectomycorrhizal fungi: a possible source of Fenton radicals during degradation of lignocellulose. New Phytol 139:636-645

    Google Scholar 

  • Cairney JWG, Sawyer NA, Sharples JM, Meharg AA (2000) Intraspecific variation in nitrogen use utilisation by isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan. Soil Biol Biochem 32:1319-1322

    CAS  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263-266

    CAS  PubMed  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microb Rev 22:21-44

    CAS  Google Scholar 

  • Chambers SM, Burke RM, Brooka PR, Cairney JWG (1999) Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylospora fibrillose. Mycol Res 103:1098-1102

    CAS  Google Scholar 

  • Chen DM, Taylor AFS, Burke RM, Cairney JWG (2001) Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytol 152:151-158

    CAS  Google Scholar 

  • Christou M, Avramides EJ, Jones DL (2006) Dissolved organic nitrogen dynamics in a mediterranean vineyard soil. Soil Biol Biochem 38:2265-2277

    CAS  Google Scholar 

  • Courty PE, Pritsch K, Schlotter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enymatic tests. New Phytol 167:309-319

    CAS  PubMed  Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133-142

    CAS  Google Scholar 

  • Ek H, Andersson S, Söderström B (1996) Carbon and nitrogen flow in silver birch and Norway spruce connected by a common mycorrhizal mycelium. Mycorrhiza 6:475-467

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris infected with four different ecto-mycorrhizal fungi. New Phytol 110:59-66

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1989) Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113:47-55

    CAS  Google Scholar 

  • Finlay RD, Frostegard A, Sonnerfeldt AM (1992) Utilization of organic and inorganic nitrogen-sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl Ex Loud. New Phytol 120:105-115

    Google Scholar 

  • Fischer W-F, André B, Rentsch D, Krolkiezer S, Tegeder M, Britkreuz K, Frommer WB (1998) Amino acid transport in plants. Trends Plant Sci 3:188-195

    Google Scholar 

  • Frey B, Schüepp (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexan-drinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122:447-454

    CAS  Google Scholar 

  • Frey B, Schüepp (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124:221-230

    Google Scholar 

  • Frey B, Brunner I, Christie P, Wiemken A, Mäder P (1998) The use of polytetrafluoroethylene (PTFE) hydrophobic membrane to study transport of 15N by mycorrhizal hyphae. In: Varma A (ed) Mycorrhiza manual. Springer, Heidelberg, pp 151-158

    Google Scholar 

  • Genetet I, Martin F, Stewart GR (1984) Nitrogen assimilation in mycorrhizas -ammonium assimilation in the N-starved ectomycorrhizal fungus Cenococcum graniforme. Plant Physiol 76:395-399

    CAS  PubMed  Google Scholar 

  • Gessler A, Schneider S, Von Sengbucsh D, Webber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275-285

    CAS  Google Scholar 

  • Gobert A, Plassard C (2002) Differential NO3− dependent patterns of NO3− uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association. New Phytol 154:509-516

    CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823

    CAS  PubMed  Google Scholar 

  • Grelet GA, Meharg AA, Alexander IJ (2005) Carbon availability affects nitrogen source utilisation by Hymenoscyphus ericae. Mycol Res 109:469-477

    CAS  PubMed  Google Scholar 

  • Grenon F, Bradley RL, Jones M, Shipley B, Peat H (2005) Soil factors controlling mineral N uptake by Picea engelmanii seedlings: the importance of gross NH4+ production rates. New Phytol 165:791-800

    CAS  PubMed  Google Scholar 

  • Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V (2003) Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol Genet Genomics 269:807-816

    CAS  PubMed  Google Scholar 

  • Guescini M, Zeppa S, Pierleoni R, Sisti D, Stocchi L, Stocchi V (2007) The expression profile of the Tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition. Curr Genet 51:31-41

    CAS  PubMed  Google Scholar 

  • Guidot A, Verner MC, Debaud JC, Marmeisse R (2005) Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15:167-177

    CAS  PubMed  Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microb 153:352-354

    CAS  Google Scholar 

  • Hawkins H-J, Johansen, George E (1999) Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol Plant 105:694-700

    CAS  Google Scholar 

  • Hawkins H-J, Johansen, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275-285

    CAS  Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C (2004) Reciprocal N (15NH4+ or 15NO3−) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol 163:629-640

    Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. Using 15NH4+ or 15NO3− supplied as ammonium nitrate. New Phytol 176:897-712

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297-299 Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835-840

    Google Scholar 

  • Jargeat P, Gay G, Debaud JC, Marmeisse R (2000) Transcription of a nitrate reductase gene isolated from the symbiotic basidiomycete fungus Hebeloma cylindrosporum does not require induction by nitrate. Mol Gen Genet 263:948-956

    CAS  PubMed  Google Scholar 

  • Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L (2003) Characterisation and expresion analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199-205

    CAS  PubMed  Google Scholar 

  • Javelle A, Morel M, Rodriguez-Pastrana BR, Botton B, Andre B, Marini AM, Brun A, Chalot M (2003) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47:411-430

    CAS  PubMed  Google Scholar 

  • Javelle A, Rodriguez-Pastrana BR, Jacob C, Botton B, Brun A, Andre B, Marini AM, Chalot M (2001) Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 505:393-398

    CAS  PubMed  Google Scholar 

  • Jentschke G, Brandes B, Kuhn A, Schröder WH, Godbold D (2001) Interdependance of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytol 149:327-337

    CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687-696

    CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15N-labelled nitrogen by a vesicular-arbsucular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122:281-288

    CAS  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73-81

    CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphal of vesicular-arbsucular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytol 124:61-68

    CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbsucular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1-9

    CAS  Google Scholar 

  • Jones DL (1999) Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biol Biochem 31:613-622

    CAS  Google Scholar 

  • Jones DL, Hodge A (1999) Biodegradation kinetics and sorption reactions of of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol Biochem 31:1331-1342

    CAS  Google Scholar 

  • Jones DL, Kielland K (2002) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209-219

    CAS  Google Scholar 

  • Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991-999

    CAS  Google Scholar 

  • Jones DL, Shannon D, Murphy DL, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749-756

    CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biol Biochem 37:413-423

    CAS  Google Scholar 

  • Kaldorf M, Schmelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol Plant Microbe Interact 11:439-448

    CAS  PubMed  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139-143

    Google Scholar 

  • Kerley SJ, Read DJ (1997) The biology of mycorrhiza in the Ericaceae XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf & Kernan and its host plants. New Phytol 136:691-701

    Google Scholar 

  • Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudie M, Legeai F, Karsenty E, Delseny M, Zimmermann S, Sentenac H (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505-513

    CAS  Google Scholar 

  • Leake JR, Read DJ (1990) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94:993-1008

    CAS  Google Scholar 

  • Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305-316

    Google Scholar 

  • Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102-110

    CAS  PubMed  Google Scholar 

  • Mäder P, Vierheilig, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155-161

    Google Scholar 

  • Martin F, Cote R, Canet D (1994) NH4+ assimilation in the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton, a 15N-NMR study. New Phytol 128:479-485

    CAS  Google Scholar 

  • Melin E, Nilsson H (1952) Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk Bot Tidskr 46:281-285

    CAS  Google Scholar 

  • Midgley DJ, Chambers SM, Cairney JWG (2004) Inorganic and organic substrates as sources of nitrogen and phosphorus for multiple genotypes of two ericoid mycorrhizal fungal taxa from Woollsia pungens and Leucopogon parviflorus (Ericaceae). Aust J Bot 52:63-71

    CAS  Google Scholar 

  • Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S (2002) A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 36:22-34

    CAS  PubMed  Google Scholar 

  • Montanini B, Viscomi AR, Bolchi A, Martin Y, Siverio JM, Balestrini R, Bonfante P, Ottonello S (2006) Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete. Biochem J 394:125-134

    CAS  PubMed  Google Scholar 

  • Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382-391

    CAS  PubMed  Google Scholar 

  • Morel M, Buee M, Chalot M, Brun A (2006) NADP-dependent glutamate dehydrogenase: a dis-pensable function in ectomycorrhizal fungi. New Phytol 169:179-190

    CAS  PubMed  Google Scholar 

  • Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: The Hebeloma cylindrosporum-Pinus pinaster model. Phytochemistry 68:41-51

    PubMed  Google Scholar 

  • Nara K (2005) Ectomycorrhizal networks and seedling establishment during early primary succession. New Näsholm T, Persson J (2001) Plant acquisition of organic nitrogen in boreal forests. Physiol Plant 111:419-426

    PubMed  Google Scholar 

  • Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of a general amino acid permease Phytol 169:169-178

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914-916

    Google Scholar 

  • Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus: Amanita muscaria. New Phytol 144: 343-349

    CAS  Google Scholar 

  • Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252-257

    PubMed  Google Scholar 

  • Plassard C, Bonafos B, Touraine B (2000) Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195-1205

    Google Scholar 

  • Qualls RG, Richardson CJ (2003) Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades. Biogeochemistry 62:197-229

    CAS  Google Scholar 

  • Quoreshi AM, Ahmad I, Malloch D, Hellebust J (1995) Nitrogen metabolism in the ectomycorrhizal fungus Hebeloma crutuliniforme. New Phytol 131:263-271

    CAS  Google Scholar 

  • Rangel-Castro JI, Danell E, Taylor AF (2002) Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12:131-137

    CAS  PubMed  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems -a journey towards relevance? New Phytol 157:475-492

    Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869-880

    CAS  PubMed  Google Scholar 

  • Roberts DM, Tyerman SD (2002) Voltage-dependent cation channels permeable to NH4+, K+, and Ca2+ in the symbiosome membrane of the model legume Lotus japonicus. Plant Physiol 128:370-378

    CAS  PubMed  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639-644

    Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990) Effect of nitrate and ammonium nutrition on the metabolism of the ectomycorrhizal basidiomycete, Hebeloma cylindrosporum Romagn. New Phytol 114:227-234

    CAS  Google Scholar 

  • Selle A, Willmann M, Grunze N, Gessler A, Weiss M, Nehls U (2005) The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168:697-706

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Sokolovski SG, Meharg AA, Maathuis FJM (2002) Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae. New Phytol 155:525-530

    Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol 86:365-371

    CAS  Google Scholar 

  • Tanaka Y, Yano, K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247-1254

    CAS  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L) Karst) and Beech (Fagus sylvatica L) in forests along north-south transects in Europe. In: Schulze E-D (ed) Carbon nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Heidelberg, pp 343-365

    Google Scholar 

  • Tibbett M, Sanders FE, Minto SJ, Dowell M, Cairney JWG (1998) Utilization of organic nitrogen by ectomycorrhizal fungi (Hebeloma spp.) of arctic and temperate regions. Mycol Res 102:1525-1532

    CAS  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG, Leake JR (1999) Temperature regulation of extracellular proteases in ectomycorrhizal fungi (Hebeloma spp.) grown in axenic culture. Mycol Res 103:707-714

    Google Scholar 

  • Tobar R, Azcon R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119-122

    Google Scholar 

  • Toussaint JP, St-Arnaut M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro comparmented system. Can J Microbiol 50:251-260

    CAS  PubMed  Google Scholar 

  • Turnbull MH, schmidt H, Erskine S, Richards PD, Stewart GR (1996) Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol 16:941-948

    PubMed  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604

    CAS  PubMed  Google Scholar 

  • Van Aarle IM, Viennois G, Amenc LK, Tatry MV, Luu DT, Plassard C (2007) Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza 17:487-494

    PubMed  Google Scholar 

  • Vieublé Gonod L, Jones DL, Chenu C (2006) Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. Eur J Soil Sci 57:320-329

    Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ 22:179-187

    CAS  Google Scholar 

  • Warren CR (2006) Potential organic and inorganic N uptake by six Eucalyptus species. Funct Plant Biol 33:653-660

    CAS  Google Scholar 

  • Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr Genet 51:71-78

    CAS  PubMed  Google Scholar 

  • Wipf D, Bendjia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119-124

    CAS  PubMed  Google Scholar 

  • Wipf D, Bendjia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB (2003) An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant, and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 46:177-181

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Plassard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gobert, A., Plassard, C. (2008). The Beneficial Effect of Mycorrhizae on N Utilization by the Host-Plant: Myth or Reality?. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_11

Download citation

Publish with us

Policies and ethics