Skip to main content

Endothelial Cell- and Lymphocyte-Based In Vitro Systems for Understanding KSHV Biology

  • Chapter
Kaposi Sarcoma Herpesvirus: New Perspectives

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 312))

Abstract

Kaposi sarcoma (KS), the most common AIDS-associated malignancy, is amultifocal tumor characterized by deregulated angiogenesis, proliferation of spindle cells, and extravasation of inflammatory cells and erythrocytes. Kaposi sarcoma-associated herpesvirus (KSHV; also human herpesvirus-8) is implicated in all clinical forms of KS. Endothelial cells (EC) harbor the KSHV genome in vivo, are permissive for virus infection in vitro, and are thought to be the precursors of KS spindle cells. Spindle cells are rare in early patch-stage KS lesions but become the predominant cell type in later plaque- and nodular-stage lesions. Alterations in endothelial/spindle cell physiology that promote proliferation and survival are thus thought to be important in disease progression and may represent potential therapeutic targets. KSHV encodes genes that stimulate cellular proliferation and migration, prevent apoptosis, and counter the host immune response. The combined effect of these genes is thought to drive the proliferation and survival of infected spindle cells and influence the lesional microenvironment. Large-scale gene expression analyses have revealed that KSHV infection also induces dramatic reprogramming of the EC transcriptome. These changes in cellular gene expression likely contribute to the development of the KS lesion. In addition to KS, KSHV is also present in B cell neoplasias including primary effusion lymphoma and multicentric Castleman disease. A combination of virus and virus-induced host factors are similarly thought to contribute to establishment and progression of these malignancies. A number of lymphocyte- and EC-based systems have been developed that afford some insight into the means by which KSHV contributes to malignant transformation of host cells. Whereas KSHV is well maintained in PEL cells cultured in vitro, explanted spindle cells rapidly lose the viral episome. Thus, endothelial cell-based systems for studying KSHV gene expression and function, as well as the effect of infection on host cell physiology, have required in vitro infection of primary or life-extended EC. This chapter includes a review of these in vitro cell culture systems, acknowledging their strengths and weaknesses and putting into perspective how each has contributed to our understanding of the complex KS lesional environment. In addition, we present a model of KS lesion progression based on findings culled from these models as well as recent clinical advances in KS chemotherapy. Thus this unifying model describes our current understanding of KS pathogenesis by drawing together multiple theories of KS progression that by themselves cannot account for the complexities of tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • (1997) Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. Lyon, France, 17–24 June 1997. IARCMonogr Eval Carcinog Risks Hum 70:1–492

    Google Scholar 

  • Aluigi MG, Albini A, Carlone S, Repetto L, De Marchi R, Icardi A, Moro M, Noonan D, Benelli R (1996) KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi’s sarcoma. Res Virol 147(5):267–75

    Article  PubMed  CAS  Google Scholar 

  • Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, McDonald AR, Lennette ET, Levy JA (1995) Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science 268(5210):582–3

    PubMed  CAS  Google Scholar 

  • Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM, Cesarman E (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88(7):2648–54

    PubMed  CAS  Google Scholar 

  • Ascherl G, Hohenadl C, Monini P, Zietz C, Browning PJ, Ensoli B, Sturzl M (1999) Expression of human herpesvirus-8 (HHV-8) encoded pathogenic genes in Kaposi’s sarcoma (KS) primary lesions. Adv Enzyme Regul 39:331–9

    Article  PubMed  CAS  Google Scholar 

  • Ballestas ME, Kaye KM (2001) Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TRDNA. J Virol 75(7):3250–8

    Article  PubMed  CAS  Google Scholar 

  • Bechtel JT, Liang Y, Hvidding J, Ganem D (2003) Host range of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 77(11):6474–81

    Article  PubMed  CAS  Google Scholar 

  • Beckstead JH, Wood GS, Fletcher V (1985) Evidence for the origin of Kaposi’s sarcoma from lymphatic endothelium. Am J Pathol 119(2):294–300

    PubMed  CAS  Google Scholar 

  • Benelli R, Albini A, Parravicini C, Carlone S, Repetto L, Tambussi G, Lazzarin A (1996) Isolation of spindle-shaped cell populations from primary cultures of Kaposi’s sarcoma of different stage. Cancer Lett 100(1–2):125–32

    Article  PubMed  CAS  Google Scholar 

  • Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, Weinstein M, Glogau RG, Witte MH, Way DL, Kutzkey T, Herndier B, Levy JA (2000) The restricted cellular host range of human herpesvirus 8. AIDS 14(9):1123–33

    Article  PubMed  CAS  Google Scholar 

  • Blauvelt A (1999) The role of human herpesvirus 8 in the pathogenesis of Kaposi’s sarcoma. Adv Dermatol 14:167–206; discussion 207

    PubMed  CAS  Google Scholar 

  • Boshoff C, Gao S-J, Healy LE, Matthews S, Thomas AJ, Coignet L, Warnke RA, Strauchen JA, Matutes E, Karnel OW, Moore PS, Weiss RA, Chang Y (1998) Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in nod/SCID mice. Blood 91(5):1671–1679

    PubMed  CAS  Google Scholar 

  • Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee JO, Weiss RA, O’Leary JJ (1995) Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1(12):1274–8

    Article  PubMed  CAS  Google Scholar 

  • Brousset P, Cesarman E, Meggetto F, Lamant L, Delsol G (2001) Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi’s sarcoma and lymphoid cells of multicentric Castleman’s disease. Hum Pathol 32(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Bubman D, Cesarman E (2003) Pathogenesis of Kaposi’s sarcoma. Hematol Oncol Clin North Am 17(3):717–45

    Article  PubMed  Google Scholar 

  • Cannon J, Hamzeh F, Moore S, Nicholas J, Ambinder R (1999) Human herpesvirus 8-encoded thymidine kinase and phosphotransferase homologues confer sensitivity to ganciclovir. J Virol 73:4786–4793

    PubMed  CAS  Google Scholar 

  • Cannon JS, Ciufo D, Hawkins AL, Griffin CA, Borowitz MJ, Hayward GS, Ambinder RF (2000) A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi’s sarcoma herpesvirus-containing supernatant. JVirol 74(21):10187–93

    Article  CAS  Google Scholar 

  • Carbone A, Gloghini A, Vaccher E, Zagonel V, Pastore C, Dalla Palma P, Branz F, Saglio G, Volpe R, Tirelli U, Gaidano G (1996) Kaposi’s sarcoma-associated herpesvirus DNA sequences in AIDS-related and AIDS-unrelated lymphomatous effusions. Br J Haematol 94(3):533–43

    Article  PubMed  CAS  Google Scholar 

  • Carroll PA, Brazeau E, Lagunoff M (2004) Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology 328(1):7–18

    Article  PubMed  CAS  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas [see comments]. N Engl J Med 332(18):1186–91

    Article  PubMed  CAS  Google Scholar 

  • Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM (1996) Kaposi’s sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 149(1):53–7

    PubMed  CAS  Google Scholar 

  • Chang J, Renne R, Dittmer D, Ganem D (2000) Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 266(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma [see comments]. Science 266(5192):1865–9

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden K, Paterson H, Weiss RA, Mittnacht S (1996) Cyclin encoded by KS herpesvirus [letter]. Nature 382(6590):410

    Article  PubMed  CAS  Google Scholar 

  • Cheung TW (2004a) AIDS-related cancer in the era of highly active antiretroviral therapy (HAART): a model of the interplay of the immune system, virus, and cancer. “On the offensive — the Trojan Horse is being destroyed” — Part A: Kaposi’s sarcoma. Cancer Invest 22(5):774–86

    Article  PubMed  CAS  Google Scholar 

  • Cheung TW (2004b) AIDS-related cancer in the era of highly active antiretroviral therapy (HAART): a model of the interplay of the immune system, virus, and cancer. “On the offensive — the Trojan Horse is being destroyed” — Part B: Malignant lymphoma. Cancer Invest 22(5):787–98

    Article  PubMed  CAS  Google Scholar 

  • Child ES, Mann DJ (2001) Novel properties of the cyclin encoded by human herpesvirus 8 that facilitate exit from quiescence. Oncogene 20(26):3311–22

    Article  PubMed  CAS  Google Scholar 

  • Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001) Spindle cell conversion by Kaposi’s sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 75(12):5614–26

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen M, Van Der Kuyl AC, Van Den Burg R, Zorgdrager F, Van Noesel CJ, Goudsmit J (2003) Gene expression profile of AIDS-related Kaposi’s sarcoma. BMC Cancer 3(1):7

    Article  PubMed  Google Scholar 

  • Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, Tosato G, Blauvelt A, Yarchoan R (2001) Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97(10):3244–50

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Sturzl MA, Blasig C, Schreier A, Guo HG, Reitz M, Opalenik SR, Browning PJ (1997) Expression of human herpesvirus 8-encoded cyclin D in Kaposi’s sarcoma spindle cells. J Natl Cancer Inst 89(24):1868–74

    Article  PubMed  CAS  Google Scholar 

  • Direkze S, Laman H (2004) Regulation of growth signalling and cell cycle by Kaposi’s sarcoma-associated herpesvirus genes. Int J Exp Pathol 85(6):305–19

    Article  PubMed  CAS  Google Scholar 

  • Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190(7):1025–32

    Article  PubMed  CAS  Google Scholar 

  • Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM (2003) Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 67(2):175–212, table of contents

    Article  PubMed  CAS  Google Scholar 

  • Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, Van Marck E, Salmon D, Gorin I, Escande J-P, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96(8):4546–4551

    Article  PubMed  CAS  Google Scholar 

  • Engels EA, Biggar RJ, Marshall VA, Walters MA, Gamache CJ, Whitby D, Goedert JJ (2003) Detection and quantification of Kaposi’s sarcoma-associated herpesvirus to predict AIDS-associated Kaposi’s sarcoma. AIDS 17(12):1847–51

    Article  PubMed  Google Scholar 

  • Fakhari FD, Dittmer DP (2002) Charting latency transcripts in Kaposi’s sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J Virol 76(12):6213–23

    Article  PubMed  CAS  Google Scholar 

  • Fickenscher H, Fleckenstein B (2001) Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci 356(1408):545–67

    Article  PubMed  CAS  Google Scholar 

  • Flaitz CM, Nichols CM, Hicks MJ (1996) Herpesviridae-associated persistent mucocutaneous ulcers in acquired immunodeficiency syndrome. A clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 81(4):433–41

    Article  PubMed  CAS  Google Scholar 

  • Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E (1998) Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394(6693):588–92

    Article  PubMed  CAS  Google Scholar 

  • Friborg J, Jr., Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402(6764):889–94

    PubMed  CAS  Google Scholar 

  • Friedman-Kien AE, Laubenstein LJ, Rubinstein P, Buimovici-Klein E, Marmor M, Stahl R, Spigland I, Kim KS, Zolla-Pazner S (1982) Disseminated Kaposi’s sarcoma in homosexual men. Ann Intern Med 96(6 Pt 1):693–700

    PubMed  CAS  Google Scholar 

  • Gaidano G, Cechova K, Chang Y, Moore PS, Knowles DM, Dalla-Favera R (1996) Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions. Leukemia 10(7):1237–40

    PubMed  CAS  Google Scholar 

  • Gill PS, Tsai YC, Rao AP, Spruck CH, 3rd, Zheng T, Harrington WA, Jr., Cheung T, Nathwani B, Jones PA (1998) Evidence for multiclonality in multicentric Kaposi’s sarcoma. Proc Natl Acad Sci USA 95(14):8257–61

    Article  PubMed  CAS  Google Scholar 

  • Glaunsinger B, Ganem D (2004) Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J Exp Med 200(3):391–8

    Article  PubMed  CAS  Google Scholar 

  • Glesby MJ, Hoover DR, Weng S, Graham NM, Phair JP, Detels R, Ho M, Saah AJ (1996) Use of antiherpes drugs and the risk of Kaposi’s sarcoma: data from the Multicenter AIDS Cohort Study. J Infect Dis 173(6):1477–80

    PubMed  CAS  Google Scholar 

  • Godden-Kent D, Talbot SJ, Boshoff C, Chang Y, Moore P, Weiss RA, Mittnacht S (1997) The cyclin encoded by Kaposi’s sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71(6):4193–8

    PubMed  CAS  Google Scholar 

  • Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005) Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105(6):2510–8

    Article  PubMed  CAS  Google Scholar 

  • Guo HG, Browning P, Nicholas J, Hayward GS, Tschachler E, Jiang YW, Sadowska M, Raffeld M, Colombini S, Gallo RC, Reitz MS, Jr. (1997) Characterization of a chemokine receptor-related gene in human herpesvirus 8 and its expression in Kaposi’s sarcoma. Virology 228(2):371–8

    Article  PubMed  CAS  Google Scholar 

  • Haque M, Davis DA, Wang V, Widmer I, Yarchoan R (2003) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 77(12):6761–8

    Article  PubMed  CAS  Google Scholar 

  • Harrington W, Jr., Sieczkowski L, Sosa C, Chan-a-Sue S, Cai JP, Cabral L, Wood C (1997) Activation of HHV-8 by HIV-1 tat. Lancet 349(9054):774–5

    PubMed  Google Scholar 

  • Hayward GS (2003) Initiation of angiogenic Kaposi’s sarcoma lesions. Cancer Cell 3(1):1–3

    Article  PubMed  CAS  Google Scholar 

  • Herndier B, Ganem D (2001) The biology of Kaposi’s sarcoma. Cancer Treat Res 104:89–126

    PubMed  CAS  Google Scholar 

  • Herndier BG, Werner A, Arnstein P, Abbey NW, Demartis F, Cohen RL, Shuman MA, Levy JA (1994) Characterization of a human Kaposi’s sarcoma cell line that induces angiogenic tumors in animals. AIDS 8(5):575–81

    PubMed  CAS  Google Scholar 

  • Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36(7):683–5

    Article  PubMed  CAS  Google Scholar 

  • Howley PM, Munger K, Werness BA, Phelps WC, Schlegel R (1989) Molecular mechanisms of transformation by the human papillomaviruses. Princess Takamatsu Symp 20:199–206

    PubMed  CAS  Google Scholar 

  • Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, Johnson RP, Cohen GB, Jung JU (2000) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5 protein. Immunity 13(3):365–74

    Article  PubMed  CAS  Google Scholar 

  • Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75(2):891–902

    Article  PubMed  CAS  Google Scholar 

  • Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3(4):281–94

    Article  PubMed  CAS  Google Scholar 

  • Judde JG, Lacoste V, Briere J, Kassa-Kelembho E, Clyti E, Couppie P, Buchrieser C, Tulliez M, Morvan J, Gessain A (2000) Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi’s sarcoma and other diseases. J Natl Cancer Inst 92(9):729–36

    Article  PubMed  CAS  Google Scholar 

  • Jussila L, Valtola R, Partanen TA, Salven P, Heikkila P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M, Tschachler E, Alitalo R, Alitalo K (1998) Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res 58(8):1599–604

    PubMed  CAS  Google Scholar 

  • Kaaya EE, Parravicini C, Ordonez C, Gendelman R, Berti E, Gallo RC, Biberfeld P (1995) Heterogeneity of spindle cells in Kaposi’s sarcoma: comparison of cells in lesions and in culture. J Acquir Immune Defic Syndr Hum Retrovirol 10(3):295–305

    PubMed  CAS  Google Scholar 

  • Kaposi M (1872) Idiopathisches multiples Pigmentsarkom der Haut. Archiv fur Dermatologie und Syphilis 3:265–73

    Article  Google Scholar 

  • Katano H, Hoshino Y, Morishita Y, Nakamura T, Satoh H, Iwamoto A, Herndier B, Mori S (1999) Establishing and characterizing a CD30-positive cell line harboring HHV-8 from a primary effusion lymphoma. J Med Virol 58(4):394–401

    Article  PubMed  CAS  Google Scholar 

  • Katano H, Ogawa-Goto K, Hasegawa H, Kurata T, Sata T (2001) Human-herpesvirus-8-encoded K8 protein colocalizes with the promyelocytic leukemia protein (PML) bodies and recruits p53 to the PML bodies. Virology 286(2):446–55

    Article  PubMed  CAS  Google Scholar 

  • Katano H, Sato Y, Kurata T, Mori S, Sata T (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 269(2):335–44

    Article  PubMed  CAS  Google Scholar 

  • Kedes DH, Lagunoff M, Renne R, Ganem D (1997) Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus. J Clin Invest 100(10):2606–10

    Article  PubMed  CAS  Google Scholar 

  • Kellam P, Boshoff C, Whitby D, Matthews S, Weiss RA, Talbot SJ (1997) Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J Hum Virol 1(1):19–29

    PubMed  CAS  Google Scholar 

  • Kellam P, Bourboulia D, Dupin N, Shotton C, Fisher C, Talbot S, Boshoff C, Weiss RA (1999) Characterization of monoclonal antibodies raised against the latent nuclear antigen of human herpesvirus 8. J Virol 73(6):5149–55

    PubMed  CAS  Google Scholar 

  • Klass CM, Krug LT, Pozharskaya VP, Offermann MK (2005) The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 105(10):4028–34

    Article  PubMed  CAS  Google Scholar 

  • Komanduri KV, Luce JA, McGrath MS, Herndier BG, Ng VL (1996) The natural history and molecular heterogeneity of HIV-associated primary malignant lymphomatous effusions. J Acquir Immune Defic Syndr Hum Retrovirol 13(3):215–26

    PubMed  CAS  Google Scholar 

  • Koon HB, Bubley GJ, Pantanowitz L, Masiello D, Smith B, Crosby K, Proper J, Weeden W, Miller TE, Chatis P, Egorin MJ, Tahan SR, Dezube BJ (2004) Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin Oncol

    Google Scholar 

  • Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78(7):3601–20

    Article  PubMed  CAS  Google Scholar 

  • Krug LT, Pozharskaya VP, Yu Y, Inoue N, Offermann MK (2004) Inhibition of infection and replication of human herpesvirus 8 in microvascular endothelial cells by alpha interferon and phosphonoformic acid. J Virol 78(15):8359–71

    Article  PubMed  CAS  Google Scholar 

  • Kushner T (1995) Angels in America. Theatre Communications Group, Inc., 520 8th Ave., New York, NY 10018–4156

    Google Scholar 

  • Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D (2002) De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76(5):2440–8

    Article  PubMed  CAS  Google Scholar 

  • Lagunoff M, Ganem D (1997) The structure and coding organization of the genomic termini of Kaposi’s sarcoma-associated herpesvirus. Virology 236(1):147–54

    Article  PubMed  CAS  Google Scholar 

  • Lallemand F, Desire N, Rozenbaum W, Nicolas JC, Marechal V (2000) Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay. J Clin Microbiol 38(4):1404–8

    PubMed  CAS  Google Scholar 

  • Laman H, Peters G, Jones N (2001) Cyclin-mediated export of human Orc1. Exp Cell Res 271(2):230–7

    Article  PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78(12):6585–94

    Article  PubMed  CAS  Google Scholar 

  • Li H, Komatsu T, Dezube BJ, Kaye KM (2002) The Kaposi’s sarcoma-associated herpesvirus K12 transcript froma primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J Virol 76(23):11880–8

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Huang YQ, Cockerell CJ, Friedman-Kien AE (1996) Localization of human herpes-like virus type 8 in vascular endothelial cells and perivascular spindle-shaped cells of Kaposi’s sarcoma lesions by in situ hybridization. Am J Pathol 148(6):1741–8

    PubMed  CAS  Google Scholar 

  • Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM (2002) The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the IκB kinase complex. J Biol Chem 277(16):13745–51

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, Chuang E, Zeichner SL (2004) Dissection of the Kaposi’s sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol 78(24):13637–52

    Article  PubMed  CAS  Google Scholar 

  • Lubyova B, Pitha PM (2000) Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol 74(17):8194–201

    Article  PubMed  CAS  Google Scholar 

  • Lukac DM, Kirshner JR, Ganem D (1999) Transcriptional activation by the product of open reading frame 50 of Kaposi’s sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73(11):9348–61

    PubMed  CAS  Google Scholar 

  • Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–73

    Article  PubMed  CAS  Google Scholar 

  • Martin DF, Kuppermann BD, Wolitz RA, Palestine AG, Li H, Robinson CA (1999) Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N Engl J Med 340(14):1063–70

    Article  PubMed  CAS  Google Scholar 

  • Matsushima AY, Strauchen JA, Lee G, Scigliano E, Hale EE, Weisse MT, Burstein D, Kamel O, Moore PS, Chang Y (1999) Posttransplantation plasmacytic proliferations related to Kaposi’s sarcoma-associated herpesvirus. Am J Surg Pathol 23(11):1393–400

    Article  PubMed  CAS  Google Scholar 

  • McAllister SC, Hansen SG, Ruhl RA, Raggo CM, DeFilippis VR, Greenspan D, Fruh K, Moses AV (2004) Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood 103(9):3465–73

    Article  PubMed  CAS  Google Scholar 

  • McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307(5710):739–41

    Article  PubMed  CAS  Google Scholar 

  • Mercader M, Taddeo B, Panella JR, Chandran B, Nickoloff BJ, Foreman KE (2000) Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 156(6):1961–71

    PubMed  CAS  Google Scholar 

  • Mocroft A, Youle M, Gazzard B, Morcinek J, Halai R, Phillips AN (1996) Anti-herpesvirus treatment and risk of Kaposi’s sarcoma in HIV infection. Royal Free/Chelsea and Westminster Hospitals Collaborative Group. AIDS 10(10):1101–5

    PubMed  CAS  Google Scholar 

  • Monini P, Colombini S, Sturzl M, Goletti D, Cafaro A, Sgadari C, Butto S, Franco M, Leone P, Fais S, Leone P, Melucci-Vigo G, Chiozzini C, Carlini F, Ascherl G, Cornali E, Zietz C, Ramazzotti E, Ensoli F, Andreoni M, Pezzotti P, Rezza G, Yarchoan R, Gallo RC, Ensoli B (1999) Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi’s sarcoma. Blood 93(12):4044–58

    PubMed  CAS  Google Scholar 

  • Moore PS, Chang Y (2003) Kaposi’s sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 57:609–39

    Article  PubMed  CAS  Google Scholar 

  • Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol. 73(8):6892–6902

    PubMed  CAS  Google Scholar 

  • Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BG, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Fruh K (2002a) A functional genomics approach to Kaposi’s sarcoma. Ann NY Acad Sci 975:180–91

    Article  PubMed  CAS  Google Scholar 

  • Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BGM, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Früh K (2002b) KSHV-induced upregulation of the c-Kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol (in press)

    Google Scholar 

  • Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Kishishita M, Brady JN, Doniger J, Medveczky P, Rosenthal LJ (1998) Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 72(6):4980–8

    PubMed  CAS  Google Scholar 

  • Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal LJ (2000) Characterization of the human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol 16(3):203–13

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU (2003) Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77(7):4205–20

    Article  PubMed  CAS  Google Scholar 

  • Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B (2003) Kaposi’s sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-ζ-MEKERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 77(2):1524–39

    Article  PubMed  CAS  Google Scholar 

  • Naranatt PP, Krishnan HH, Svojanovsky SR, Bloomer C, Mathur S, Chandran B (2004) Host gene induction and transcriptional reprogramming in Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res 64(1):72–84

    Article  PubMed  CAS  Google Scholar 

  • Neipel F, Albrecht JC, Fleckenstein B (1997) Cell-homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71(6):4187–92

    PubMed  CAS  Google Scholar 

  • Nicholas J, Zong JC, Alcendor DJ, Ciufo DM, Poole LJ, Sarisky RT, Chiou CJ, Zhang X, Wan X, Guo HG, Reitz MS, Hayward GS (1998) Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J Natl Cancer Inst Monogr 23:79–88

    PubMed  CAS  Google Scholar 

  • Okuno T, Jiang YB, Ueda K, Nishimura K, Tamura T, Yamanishi K (2002) Activation of human herpesvirus 8 open reading frame K5 independent of ORF50 expression. Virus Res 90(1–2):77–89

    Article  PubMed  CAS  Google Scholar 

  • Pantanowitz L, Dezube BJ, Pinkus GS, Tahan SR (2004) Histological characterization of regression in acquired immunodeficiency syndrome-related Kaposi’s sarcoma. J Cutan Pathol 31(1):26–34

    Article  PubMed  Google Scholar 

  • Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, Moore PS, Chang Y (2000) Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 156(3):743–9

    PubMed  CAS  Google Scholar 

  • Paulose-Murphy M, Ha NK, Xiang C, Chen Y, Gillim L, Yarchoan R, Meltzer P, Bittner M, Trent J, Zeichner S (2001) Transcription program of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 75(10):4843–53

    Article  PubMed  CAS  Google Scholar 

  • Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE (1997) The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology 238(1):22–9

    Article  PubMed  CAS  Google Scholar 

  • Polstra AM, Cornelissen M, Goudsmit J, van der Kuyl AC (2004) Retrospective, longitudinal analysis of serum human herpesvirus-8 viral DNA load in AIDS-related Kaposi’s sarcoma patients before and after diagnosis. J Med Virol 74(3):390–6

    Article  PubMed  CAS  Google Scholar 

  • Polstra AM, Goudsmit J, Cornelissen M (2003) Latent and lytic HHV-8 mRNA expression in PBMCs and Kaposi’s sarcoma skin biopsies of AIDS Kaposi’s sarcoma patients. J Med Virol 70(4):624–7

    Article  PubMed  CAS  Google Scholar 

  • Poole LJ, Yu Y, Kim PS, Zheng QZ, Pevsner J, Hayward GS (2002) Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J Virol 76(7):3395–420

    Article  PubMed  CAS  Google Scholar 

  • Rabkin CS, Janz S, Lash A, Coleman AE, Musaba E, Liotta L, Biggar RJ, Zhuang Z (1997)Monoclonal origin of multicentric Kaposi’s sarcoma lesions. N Engl JMed 336(14):988–93

    Article  CAS  Google Scholar 

  • Radkov SA, Kellam P, Boshoff C (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6(10):1121–7

    Article  PubMed  CAS  Google Scholar 

  • Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Früh K, Moses A (2005) Novel cellular genes essential for transformaton of endothelial cells by Kaposi1s sarcoma-associated herpesvirus. Cancer Res

    Google Scholar 

  • Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H, Herrington CS, Moore PS, Schulz TF (1997) The 222-to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71(8):5915–21

    PubMed  CAS  Google Scholar 

  • Regezi JA, MacPhail LA, Daniels TE, DeSouza YG, Greenspan JS, Greenspan D (1993a) Human immunodeficiency virus-associated oral Kaposi’s sarcoma. A heterogeneous cell population dominated by spindle-shaped endothelial cells. AmJ Pathol 143(1):240–9

    CAS  Google Scholar 

  • Regezi JA, MacPhail LA, Daniels TE, Greenspan JS, Greenspan D, Dodd CL, Lozada-Nur F, Heinic GS, Chinn H, Silverman S, Jr., et al. (1993b) Oral Kaposi’s sarcoma: a 10-year retrospective histopathologic study. J Oral Pathol Med 22(7):292–7

    Article  PubMed  CAS  Google Scholar 

  • Renne R, Barry C, Dittmer D, Compitello N, Brown PO, Ganem D (2001) Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75(1):458–68

    Article  PubMed  CAS  Google Scholar 

  • Renne R, Lagunoff M, Zhong W, Ganem D (1996a) The size and conformation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 70(11):8151–4

    PubMed  CAS  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996b) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2(3):342–6

    Article  PubMed  CAS  Google Scholar 

  • Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y (2001) Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75(1):429–38

    Article  PubMed  CAS  Google Scholar 

  • Roth WK, Brandstetter H, Sturzl M (1992) Cellular and molecular features of HIV-associated Kaposi’s sarcoma [editorial] [published erratum appears in AIDS 1992 Nov;6(11):following 1410]. AIDS 6(9):895–913

    PubMed  CAS  Google Scholar 

  • Roth WK, Werner S, Risau W, Remberger K, Hofschneider PH (1988) Cultured, AIDS-related Kaposi’s sarcoma cells express endothelial cell markers and are weakly malignant in vitro. Int J Cancer 42(5):767–73

    PubMed  CAS  Google Scholar 

  • Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93(25):14862–7

    Article  PubMed  CAS  Google Scholar 

  • Rutgers JL, Wieczorek R, Bonetti F, Kaplan KL, Posnett DN, Friedman-Kien AE, Knowles DM, 2nd (1986) The expression of endothelial cell surface antigens by AIDS-associated Kaposi’s sarcoma. Evidence for a vascular endothelial cell origin. Am J Pathol 122(3):493–9

    PubMed  CAS  Google Scholar 

  • Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73(7):5722–30

    PubMed  CAS  Google Scholar 

  • Salahuddin SZ, Nakamura S, Biberfeld P, Kaplan MH, Markham PD, Larsson L, Gallo RC (1988) Angiogenic properties of Kaposi’s sarcoma-derived cells after long-term culture in vitro. Science 242(4877):430–3

    Article  PubMed  CAS  Google Scholar 

  • Scully PA, Steinman HK, Kennedy C, Trueblood K, Frisman DM, Voland JR (1988) AIDS-related Kaposi’s sarcoma displays differential expression of endothelial surface antigens. Am J Pathol 130(2):244–51

    PubMed  CAS  Google Scholar 

  • Seo T, Park J, Lim C, Choe J (2004) Inhibition of nuclear factor kappaB activity by viral interferon regulatory factor 3 of Kaposi’s sarcoma-associated herpesvirus. Oncogene 23(36):6146–55

    Article  PubMed  CAS  Google Scholar 

  • Serraino D, Toma L, Andreoni M, Butto S, Tchangmena O, Sarmati L, Monini P, Franceschi S, Ensoli B, Rezza G (2001) A seroprevalence study of human herpesvirus type 8 (HHV8) in eastern and Central Africa and in the Mediterranean area. Eur J Epidemiol 17(9):871–6

    Article  PubMed  CAS  Google Scholar 

  • Skobe M, Brown LF, Tognazzi K, Ganju RK, Dezube BJ, Alitalo K, Detmar M (1999) Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi’s sarcoma. J Invest Dermatol 113(6):1047–53

    Article  PubMed  CAS  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86(4):1276–80

    PubMed  CAS  Google Scholar 

  • Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, Haase AT (1999) Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 73(5):4181–7

    PubMed  CAS  Google Scholar 

  • Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson DJ, Ganem D, Haase AT (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71(1):715–9

    PubMed  CAS  Google Scholar 

  • Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R, Dittmer DP (2004) The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res 64(14):4790–9

    Article  PubMed  CAS  Google Scholar 

  • Strauchen JA, Hauser AD, Burstein D, Jimenez R, Moore PS, Chang Y (1996) Body cavity-based malignant lymphoma containing Kaposi sarcoma-associated herpesvirus in an HIV-negative man with previous Kaposi sarcoma. Ann Intern Med 125(10):822–5

    PubMed  CAS  Google Scholar 

  • Sturzl M, Blasig C, Schreier A, Neipel F, Hohenadl C, Cornali E, Ascherl G, Esser S, Brockmeyer NH, Ekman M, Kaaya EE, Tschachler E, Biberfeld P (1997) Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi’s sarcoma. Int J Cancer 72(1):68–71

    Article  PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Gradoville L, Miller G (1996) Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 93(21):11883–8

    Article  PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73(3):2232–42

    PubMed  CAS  Google Scholar 

  • Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G, Jones N (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390(6656):184–187

    Article  PubMed  CAS  Google Scholar 

  • Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA 96(15):8449–54

    Article  PubMed  CAS  Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–21

    Article  PubMed  CAS  Google Scholar 

  • Tomescu C, Law WK, Kedes DH (2003) Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi’s sarcoma-associated herpesvirus. JVirol 77(17):9669–84

    Article  CAS  Google Scholar 

  • Venetsanakos E, Mirza A, Fanton C, Romanov SR, Tlsty T, McMahon M (2002) Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. Exp Cell Res 273(1):21–33

    Article  PubMed  CAS  Google Scholar 

  • Verschuren EW, Klefstrom J, Evan GI, Jones N (2002) The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2(3):229–41

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, O’Hearn P, Kimball L, Chandran B, Corey L (2001) Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol 75(3):1378–86

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, O’Hearn PM (2004) Use of the red fluorescent protein as amarker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology 325(2):225–40

    Article  PubMed  CAS  Google Scholar 

  • Viejo-Borbolla A, Ottinger M, Schulz TF (2003) Human herpesvirus 8: biology and role in the pathogenesis of Kaposi’s sarcoma and other AIDS-related malignancies. Curr Infect Dis Rep 5(2):169–175

    PubMed  Google Scholar 

  • Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36(7):687–93

    Article  PubMed  CAS  Google Scholar 

  • Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Sturzl M, Kerjaschki D, Alitalo K, Tschachler E (1999) Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab Invest 79(2):243–51

    PubMed  CAS  Google Scholar 

  • Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248(4951):76–9

    Article  PubMed  CAS  Google Scholar 

  • West JT, Wood C (2003) The role of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 regulator of transcription activation (RTA) in control of gene expression. Oncogene 22(33):5150–63

    Article  PubMed  CAS  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of themurine lymphatic system. Cell 98(6):769–78

    Article  PubMed  CAS  Google Scholar 

  • Yarchoan R (2004) KSHV induces heme oxygenase: another trick by awily virus. Blood 103(9):3252–3253

    Article  CAS  Google Scholar 

  • Yu Y, Black JB, Goldsmith CS, Browning PJ, Bhalla K, Offermann MK (1999) Induction of human herpesvirus-8 DNA replication and transcription by butyrate and TPA in BCBL-1 cells. J Gen Virol 80 (Pt 1):83–90

    PubMed  CAS  Google Scholar 

  • Zenger E, Abbey NW, Weinstein MD, Kapp L, Reis J, Gofman I, Millward C, Gascon R, Elbaggari A, Herndier BG, McGrath MS (2002) Injection of human primary effusion lymphoma cells or associated macrophages into severe combined immunodeficient mice causes murine lymphomas. Cancer Res 62(19):5536–42

    PubMed  CAS  Google Scholar 

  • Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13(11):2323–30

    PubMed  CAS  Google Scholar 

  • Zhong W, Wang H, Herndier B, Ganem D (1996) Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl. Acad. Sci. USA 93(13):6641–6646

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004) Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci USA 101(24):9073–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McAllister, S.C., Moses, A.V. (2007). Endothelial Cell- and Lymphocyte-Based In Vitro Systems for Understanding KSHV Biology. In: Boshoff, C., Weiss, R.A. (eds) Kaposi Sarcoma Herpesvirus: New Perspectives. Current Topics in Microbiology and Immunology, vol 312. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34344-8_8

Download citation

Publish with us

Policies and ethics