Skip to main content

Pint: A Static Analyzer for Transient Dynamics of Qualitative Networks with IPython Interface

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10545))

Abstract

The software Pint is devoted to the scalable analysis of the traces of automata networks, which encompass Boolean and discrete networks. Pint implements formal approximations of transient reachability-related properties, including mutation prediction and model reduction.

Pint is distributed with command line tools, as well as a Python module pypint. The latter provides a seamless integration with the Jupyter IPython notebook web interface, which allows to easily save, reuse, reproduce, and share workflows of model analysis.

Pint can address networks with hundreds to thousands interacting components, which are typically intractable with standard approaches.

This work was supported by ANR-FNR project “AlgoReCell” (ANR-16-CE12-0034) and by CNRS PEPS INS2I 2017 project “FoRCe”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://docker.com.

References

  1. Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.: Model checking to assess t-helper cell plasticity. In: Front. Bioeng. Biotechnol. 2, January 2015

    Google Scholar 

  2. Antao, T.: Bioinformatics with Python cookbook. Packt Publishing Ltd., Birmingham (2015)

    Google Scholar 

  3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  4. Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  Google Scholar 

  5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0_29

    Chapter  Google Scholar 

  6. Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., de Hoon, M.J.L.: Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11), 1422–1423 (2009)

    Article  Google Scholar 

  7. Fages, F., Martinez, T., Rosenblueth, D.A., Soliman, S.: Influence systems vs reaction systems. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 98–115. Springer, Cham (2016). doi:10.1007/978-3-319-45177-0_7

    Chapter  Google Scholar 

  8. Fitime, L.F., Roux, O., Guziolowski, C., Paulevé, L.: Identification of bifurcations in biological regulatory networks using answer-set programming. In: Constraint-Based Methods for Bioinformatics Workshop (2016)

    Google Scholar 

  9. Folschette, M., Paulevé, L., Magnin, M., Roux, O.: Sufficient conditions for reachability in automata networks with priorities. Theor. Comput. Sci. 608, 66–83 (2015). Part 1, From Computer Science to Biology and Back

    Article  MathSciNet  MATH  Google Scholar 

  10. Gonzalez, A.G., Naldi, A., Sánchez, L., Thieffry, D., Chaouiya, C.: Ginsim: A software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84(2), 91–100 (2006). Dynamical Modeling of Biological Regulatory Networks

    Article  Google Scholar 

  11. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

    Article  Google Scholar 

  12. Grunberg, R., Nilges, M., Leckner, J.: Biskit – a software platform for structural bioinformatics. Bioinformatics 23(6), 769–770 (2007)

    Article  Google Scholar 

  13. Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A., Wicks, B., Shrestha, M., Limbu, K., Rogers, J.A.: The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6(1), 96 (2012)

    Article  Google Scholar 

  14. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of boolean networks. Bioinformatics 33, 770–772 (2016)

    Google Scholar 

  15. Leprevost, F.V., et al.: Biocontainers: an open-source and community-driven framework for software standardization. Bioinform. (Oxford Engl.) 33, 2580–2582 (2017)

    Google Scholar 

  16. LIP6/Move. Its tools. http://ddd.lip6.fr/itstools.php

  17. MacNamara, A., Terfve, C., Henriques, D., Bernabé, B.P., Saez-Rodriguez, J.: State-time spectrum of signal transduction logic models. Phys. Biol. 9(4), 45003 (2012)

    Article  Google Scholar 

  18. Mussel, C., Hopfensitz, M., Kestler, H.A.: BoolNet - an R package for generation, reconstruction and analysis of boolean networks. Bioinformatics 26(10), 1378–1380 (2010)

    Article  Google Scholar 

  19. Paulevé, L.: Goal-oriented reduction of automata networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 252–272. Springer, Cham (2016). doi:10.1007/978-3-319-45177-0_16

    Chapter  Google Scholar 

  20. Paulevé, L., Andrieux, G., Koeppl, H.: Under-approximating cut sets for reachability in large scale automata networks. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification. LNCS, vol. 8044, pp. 69–84. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using abstract interpretation. Math. Struct. Comput.Sci. 22(4), 651–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rougny, A., Froidevaux, C., Calzone, L., Paulevé, L.: Qualitative dynamics semantics for SBGN process description. BMC Syst. Biol. 10(1), 1–24 (2016)

    Article  Google Scholar 

  23. Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.: The logic of EGFR/ERBB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)

    Article  Google Scholar 

  24. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized egf receptors. Nature Biotechnol. 20(4), 370–375 (2002)

    Article  Google Scholar 

  25. Schwoon, S.: Mole. http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Paulevé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Paulevé, L. (2017). Pint: A Static Analyzer for Transient Dynamics of Qualitative Networks with IPython Interface. In: Feret, J., Koeppl, H. (eds) Computational Methods in Systems Biology. CMSB 2017. Lecture Notes in Computer Science(), vol 10545. Springer, Cham. https://doi.org/10.1007/978-3-319-67471-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67471-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67470-4

  • Online ISBN: 978-3-319-67471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics