Skip to main content

Verocytotoxin-Producing Escherichia coli in the Genomic Era: From Virulotyping to Pathogenomics

  • Chapter
  • First Online:
Applied Genomics of Foodborne Pathogens

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

Verocytotoxin (VT)-producing Escherichia coli (VTEC) are emerging food-borne pathogens causing severe disease in humans. VTEC genomes are highly variable due to the presence of many mobile genetic elements harbouring virulence genes, which can be acquired or lost through horizontal gene transfer. Such an impressive variability hinders the possibility to define a clear-cut strategy to proactively identify the strains able to cause disease in humans among the wealth of putatively harmless VTEC circulating in the animal reservoir. The advent of high throughput sequencing technologies opened new opportunities for the characterization and typing of VTEC strains, witnessed by their massive use during the huge outbreak of haemolytic uremic syndrome caused by an Enteroaggregative VT-producing E. coli O104:H4 in Germany in 2011. This chapter discusses the Next Generation Sequencing technologies applied to the study of VTEC evolution and epidemiology, highlighting the main challenges affecting their present use and the opportunities offered by the genomic era for VTEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konowalchuk J, Dickie N, Stavric S, Speirs JI. Properties of an Escherichia coli cytotoxin. Infect Immun. 1978;20(2):575–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Konowalchuk J, Speirs JI, Stavric S. Vero response to a cytotoxin of Escherichia coli. Infect Immun. 1977;18(3):775–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Karmali MA, Steele BT, Petric M, Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;1(8325):619–20.

    Article  CAS  PubMed  Google Scholar 

  4. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308(12):681–5. doi:10.1056/NEJM198303243081203.

    Article  CAS  PubMed  Google Scholar 

  5. Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL, Wymore K, Gierke RE, Mahon BE, Griffin PM, Emerging Infections Program Foodnet Working Group. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis. 2013;10(5):453–60. doi:10.1089/fpd.2012.1401.

    Article  PubMed  Google Scholar 

  6. Karmali MA. Infection by verocytotoxin-producing Escherichia coli. Clin Microbiol Rev. 1989;2(1):15–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mathusa EC, Chen Y, Enache E, Hontz L. Non-O157 Shiga toxin-producing Escherichia coli in foods. J Food Prot. 2010;73(9):1721–36.

    Article  PubMed  Google Scholar 

  8. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17(1):7–15. doi:10.3201/eid1701.091101p1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98.

    CAS  PubMed  Google Scholar 

  10. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11(1):142–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Karmali MA, Gannon V, Sargeant JM. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol. 2010;140(3–4):360–70. doi:10.1016/j.vetmic.2009.04.011.

    Article  CAS  PubMed  Google Scholar 

  12. EFSA. Scientific opinion on VTEC-seropathotype and scientific criteria regarding pathogenicity assessment. EFSA J. 2013;11. doi:10.2903/j.efsa.2013.3138.

  13. Imamovic L, Tozzoli R, Michelacci V, Minelli F, Marziano ML, Caprioli A, Morabito S. OI-57, a genomic island of Escherichia coli O157, is present in other seropathotypes of Shiga toxin-producing E. coli associated with severe human disease. Infect Immun. 2010;78(11):4697–704. doi:10.1128/IAI.00512-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A. 2002;99(24):15711–6. doi:10.1073/pnas.232454299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karmali MA, Mascarenhas M, Shen S, Ziebell K, Johnson S, Reid-Smith R, Isaac-Renton J, Clark C, Rahn K, Kaper JB. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol. 2003;41(11):4930–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDaniel TK, Kaper JB. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol. 1997;23(2):399–407.

    Article  CAS  PubMed  Google Scholar 

  17. Morabito S, Tozzoli R, Oswald E, Caprioli A. A mosaic pathogenicity island made up of the locus of enterocyte effacement and a pathogenicity island of Escherichia coli O157:H7 is frequently present in attaching and effacing E. coli. Infect Immun. 2003;71(6):3343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science. 1984;226(4675):694–6.

    Article  PubMed  Google Scholar 

  19. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001;8(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  20. Perna NT, Plunkett 3rd G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409(6819):529–33. doi:10.1038/35054089.

    Article  CAS  PubMed  Google Scholar 

  21. Muniesa M, Blanco JE, De Simon M, Serra-Moreno R, Blanch AR, Jofre J. Diversity of stx2 converting bacteriophages induced from Shiga-toxin-producing Escherichia coli strains isolated from cattle. Microbiology. 2004;150(Pt 9):2959–71. doi:10.1099/mic.0.27188-0.

    Article  CAS  PubMed  Google Scholar 

  22. Strockbine NA, Marques LR, Newland JW, Smith HW, Holmes RK, O’Brien AD. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun. 1986;53(1):135–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Willshaw GA, Smith HR, Scotland SM, Field AM, Rowe B. Heterogeneity of Escherichia coli phages encoding Vero cytotoxins: comparison of cloned sequences determining VT1 and VT2 and development of specific gene probes. J Gen Microbiol. 1987;133(5):1309–17.

    CAS  PubMed  Google Scholar 

  24. Calderwood SB, Auclair F, Donohue-Rolfe A, Keusch GT, Mekalanos JJ. Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc Natl Acad Sci U S A. 1987;84(13):4364–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang A, de Grandis S, Friesen J, Karmali M, Petric M, Congi R, Brunton JL. Cloning and expression of the genes specifying Shiga-like toxin production in Escherichia coli H19. J Bacteriol. 1986;166(2):375–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O’Brien AD, Marques LR, Kerry CF, Newland JW, Holmes RK. Shiga-like toxin converting phage of enterohemorrhagic Escherichia coli strain 933. Microb Pathog. 1989;6(5):381–90.

    Article  PubMed  Google Scholar 

  27. Karch H, Meyer T. Single primer pair for amplifying segments of distinct Shiga-like-toxin genes by polymerase chain reaction. J Clin Microbiol. 1989;27(12):2751–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Willshaw GA, Smith HR, Scotland SM, Rowe B. Cloning of genes determining the production of vero cytotoxin by Escherichia coli. J Gen Microbiol. 1985;131(11):3047–53.

    CAS  PubMed  Google Scholar 

  29. Persson S, Olsen KE, Ethelberg S, Scheutz F. Subtyping method for Escherichia coli shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J Clin Microbiol. 2007;45(6):2020–4. doi:10.1128/JCM.02591-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA, Melton-Celsa AR, Sanchez M, Persson S, O’Brien AD. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol. 2012;50(9):2951–63. doi:10.1128/JCM.00860-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friedrich AW, Bielaszewska M, Zhang WL, Pulz M, Kuczius T, Ammon A, Karch H. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis. 2002;185(1):74–84. doi:10.1086/338115.

    Article  CAS  PubMed  Google Scholar 

  32. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 1995;92(5):1664–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frankel G, Candy DC, Everest P, Dougan G. Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei. Infect Immun. 1994;62(5):1835–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM, Strockbine NA, Young VB, Whittam TS. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol. 2005;187(2):619–28. doi:10.1128/JB.187.2.619-628.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lacher DW, Steinsland H, Whittam TS. Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol Lett. 2006;261(1):80–7. doi:10.1111/j.1574-6968.2006.00328.x.

    Article  CAS  PubMed  Google Scholar 

  36. Schauer DB, Falkow S. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infect Immun. 1993;61(11):4654–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Delahay RM, Frankel G, Knutton S. Intimate interactions of enteropathogenic Escherichia coli at the host cell surface. Curr Opin Infect Dis. 2001;14(5):559–65.

    Article  CAS  PubMed  Google Scholar 

  38. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol. 1998;30(5):911–21.

    Article  CAS  PubMed  Google Scholar 

  39. Hartland EL, Batchelor M, Delahay RM, Hale C, Matthews S, Dougan G, Knutton S, Connerton I, Frankel G. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol. 1999;32(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  40. Agin TS, Wolf MK. Identification of a family of intimins common to Escherichia coli causing attaching-effacing lesions in rabbits, humans, and swine. Infect Immun. 1997;65(1):320–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Oswald E, Schmidt H, Morabito S, Karch H, Marches O, Caprioli A. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun. 2000;68(1):64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fitzhenry RJ, Pickard DJ, Hartland EL, Reece S, Dougan G, Phillips AD, Frankel G. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut. 2002;50(2):180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol. 1999;37(3):497–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gyles CL. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci. 2007;85 Suppl 13:E45–62. doi:10.2527/jas.2006-508.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson JB, Clarke RC, Renwick SA, Rahn K, Johnson RP, Karmali MA, Lior H, Alves D, Gyles CL, Sandhu KS, McEwen SA, Spika JS. Vero cytotoxigenic Escherichia coli infection in dairy farm families. J Infect Dis. 1996;174(5):1021–7.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson KE, Thorpe CM, Sears CL. The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin Infect Dis. 2006;43(12):1587–95. doi:10.1086/509573.

    Article  PubMed  Google Scholar 

  47. Mellmann A, Bielaszewska M, Köck R, Friedrich AW, Fruth A, Middendorf B, Harmsen D, Schmidt MA, Karch H. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis. 2008;14(8):1287–90. doi:10.3201/eid1408.071082.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Newton HJ, Sloan J, Bulach DM, Seemann T, Allison CC, Tauschek M, Robins-Browne RM, Paton JC, Whittam TS, Paton AW, Hartland EL. Shiga toxin-producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg Infect Dis. 2009;15(3):372–80. doi:10.3201/eid1503.080631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Käppeli U1, Hächler H1, Giezendanner N1, Cheasty T2, Stephan R1. Shiga toxin-producing Escherichia coli O157 associated with human infections in Switzerland, 2000-2009. Epidemiol Infect. 2011; 139(7):1097-104. doi:10.1017/S0950268810002190.

  50. Watanabe H, Wada A, Inagaki Y, Itoh K, Tamura K. Outbreaks of enterohaemorrhagic Escherichia coli O157:H7 infection by two different genotype strains in Japan, 1996. Lancet. 1996;348(9030):831–2.

    Article  CAS  PubMed  Google Scholar 

  51. Kudva IT, Evans PS, Perna NT, Barrett TJ, Ausubel FM, Blattner FR, Calderwood SB. Strains of Escherichia coli O157:H7 differ primarily by insertions or deletions, not single-nucleotide polymorphisms. J Bacteriol. 2002;184(7):1873–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blattner FR, Plunkett 3rd G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science. 1997;277(5331):1453–62.

    Article  CAS  PubMed  Google Scholar 

  53. Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641–79. doi:10.1146/annurev.micro.54.1.641.

    Article  CAS  PubMed  Google Scholar 

  54. Klapproth JM, Scaletsky IC, McNamara BP, Lai LC, Malstrom C, James SP, Donnenberg MS. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun. 2000;68(4):2148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nicholls L, Grant TH, Robins-Browne RM. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol. 2000;35(2):275–88.

    Article  CAS  PubMed  Google Scholar 

  56. Karmali MA. Use of comparative genomics as a tool to assess the clinical and public health significance of emerging Shiga toxin-producing Escherichia coli serotypes. Meat Sci. 2005;71(1):62–71. doi:10.1016/j.meatsci.2005.03.001.

    Article  CAS  PubMed  Google Scholar 

  57. Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol. 2014;187:57–72. doi:10.1016/j.ijfoodmicro.2014.07.002.

    Article  PubMed  Google Scholar 

  58. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP, Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009;5(1), e1000344. doi:10.1371/journal.pgen.1000344.

    Article  PubMed  PubMed Central  Google Scholar 

  59. van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011;5(2):173–83. doi:10.1038/ismej.2010.80.

    Article  PubMed  Google Scholar 

  60. ECDC. Shiga toxin-producing E. coli (STEC): update on outbreak in the EU (27 July 2011, 11:00). European Centre for Disease Prevention and Control, Outbreak Update; 2011. http://ecdceuropaeu/en/activities/sciadvice/_layouts/forms/Review_DispFormaspx?List=a3216f4c-f040-4f51-9f77-a96046dbfd72&ID=602.

    Google Scholar 

  61. Karch H, Denamur E, Dobrindt U, Finlay BB, Hengge R, Johannes L, Ron EZ, Tonjum T, Sansonetti PJ, Vicente M. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol Med. 2012;4(9):841–8. doi:10.1002/emmm.201201662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scheutz F, Nielsen EM, Frimodt-Moller J, Boisen N, Morabito S, Tozzoli R, Nataro JP, Caprioli A. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill. 2011;16(24).

    Google Scholar 

  63. Werber D, King LA, Muller L, Follin P, Buchholz U, Bernard H, Rosner B, Ethelberg S, de Valk H, Hohle M. Associations of age and sex with the clinical outcome and incubation period of Shiga toxin-producing Escherichia coli O104:H4 infections, 2011. Am J Epidemiol. 2013;178(6):984–92. doi:10.1093/aje/kwt069.

    Article  PubMed  Google Scholar 

  64. EFSA. Tracing seeds, in particular fenugreek (Trigonella foenum-graecum) seeds, in relation to the Shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Germany and France. Technical report of the European Food Safety Authority; 2011. http://www.efsaeuropaeu/it/supporting/pub/176ehtm.

  65. Brzuszkiewicz E, Thurmer A, Schuldes J, Leimbach A, Liesegang H, Meyer FD, Boelter J, Petersen H, Gottschalk G, Daniel R. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch Microbiol. 2011;193(12):883–91. doi:10.1007/s00203-011-0725-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6(7), e22751. doi:10.1371/journal.pone.0022751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med. 2011;365(8):709–17. doi:10.1056/NEJMoa1106920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R, Consortium EcOHGAC-S. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med. 2011;365(8):718–24. doi:10.1056/NEJMoa1107643.

    Article  CAS  PubMed  Google Scholar 

  69. EHEC-crowdsourced. E. coli O104:H4 genome analysis crowdsourcing. 2011. https://githubcom/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki.

    Google Scholar 

  70. Beutin L, Hammerl JA, Reetz J, Strauch E. Shiga toxin-producing Escherichia coli strains from cattle as a source of the Stx2a bacteriophages present in enteroaggregative Escherichia coli O104:H4 strains. Int J Med Microbiol. 2013;303(8):595–602. doi:10.1016/j.ijmm.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  71. Hebbelstrup Jensen B, Olsen KE, Struve C, Krogfelt KA, Petersen AM. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev. 2014;27(3):614–30. doi:10.1128/CMR.00112-13.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Valat C, Auvray F, Forest K, Metayer V, Gay E, Peytavin de Garam C, Madec JY, Haenni M. Phylogenetic grouping and virulence potential of extended-spectrum-beta-lactamase-producing Escherichia coli strains in cattle. Appl Environ Microbiol. 2012;78(13):4677–82. doi:10.1128/AEM.00351-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pritchard L, Holden NJ, Bielaszewska M, Karch H, Toth IK. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains. PLoS One. 2012;7(4), e34498. doi:10.1371/journal.pone.0034498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morabito S, Karch H, Mariani-Kurkdjian P, Schmidt H, Minelli F, Bingen E, Caprioli A. Enteroaggregative, Shiga toxin-producing Escherichia coli O111:H2 associated with an outbreak of hemolytic-uremic syndrome. J Clin Microbiol. 1998;36(3):840–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dallman T, Smith GP, O’Brien B, Chattaway MA, Finlay D, Grant KA, Jenkins C. Characterization of a verocytotoxin-producing enteroaggregative Escherichia coli serogroup O111:H21 strain associated with a household outbreak in Northern Ireland. J Clin Microbiol. 2012;50(12):4116–9. doi:10.1128/JCM.02047-12.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tozzoli R, Grande L, Michelacci V, Ranieri P, Maugliani A, Caprioli A, Morabito S. Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion. Front Cell Infect Microbiol. 2014;4:80. doi:10.3389/fcimb.2014.00080.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Grande L, Michelacci V, Tozzoli R, Ranieri P, Maugliani A, Caprioli A, Morabito S. Whole genome sequence comparison of vtx2-converting phages from Enteroaggregative Haemorrhagic Escherichia coli strains. BMC Genomics. 2014;15:574. doi:10.1186/1471-2164-15-574.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Beutin L, Hammerl JA, Strauch E, Reetz J, Dieckmann R, Kelner-Burgos Y, Martin A, Miko A, Strockbine NA, Lindstedt BA, Horn D, Monse H, Huettel B, Muller I, Stuber K, Reinhardt R. Spread of a distinct Stx2-encoding phage prototype among Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and Georgia. J Virol. 2012;86(19):10444–55. doi:10.1128/JVI.00986-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Werts C, Michel V, Hofnung M, Charbit A. Adsorption of bacteriophage lambda on the LamB protein of Escherichia coli K-12: point mutations in gene J of lambda responsible for extended host range. J Bacteriol. 1994;176(4):941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. DG-SANTE. Vision paper on the development of data bases for molecular testing of foodborne pathogens in view of outbreak preparedness. European Commission, Directorate General for Health and Food Safety; 2012. http://eceuropaeu/food/food/biosafety/salmonella/docs/vision-paper_enpdf.

    Google Scholar 

  81. EFSA. EFSA’s 20th Scientific Colloquium on Whole Genome Sequencing of food-borne pathogens for public health protection. European Food Safety Authority, Scientific Colloquium 20, Parma 16–17 Giugno 2014; 2014. http://wwwefsaeuropaeu/it/supporting/pub/743ehtm.

    Google Scholar 

  82. Jolley KA, Maiden MC. Using MLST to study bacterial variation: prospects in the genomic era. Future Microbiol. 2014;9(5):623–30. doi:10.2217/fmb.14.24.

    Article  CAS  PubMed  Google Scholar 

  83. Kovanen SM, Kivisto RI, Rossi M, Schott T, Karkkainen UM, Tuuminen T, Uksila J, Rautelin H, Hanninen ML. Multilocus sequence typing (MLST) and whole-genome MLST of Campylobacter jejuni isolates from human infections in three districts during a seasonal peak in Finland. J Clin Microbiol. 2014;52(12):4147–54. doi:10.1128/JCM.01959-14.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Revez J, Zhang J, Schott T, Kivisto R, Rossi M, Hanninen ML. Genomic variation between Campylobacter jejuni isolates associated with milk-borne-disease outbreaks. J Clin Microbiol. 2014;52(8):2782–6. doi:10.1128/JCM.00931-14.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bennett JS, Jolley KA, Maiden MC. Genome sequence analyses show that Neisseria oralis is the same species as ‘Neisseria mucosa var. heidelbergensis’. Int J Syst Evol Microbiol. 2013;63(Pt 10):3920–6. doi:10.1099/ijs.0.052431-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kohl TA, Diel R, Harmsen D, Rothganger J, Walter KM, Merker M, Weniger T, Niemann S. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J Clin Microbiol. 2014;52(7):2479–86. doi:10.1128/JCM.00567-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee Y, Kim BS, Chun J, Yong JH, Lee YS, Yoo JS, Yong D, Hong SG, D’Souza R, Thomson KS, Lee K, Chong Y. Clonality and resistome analysis of KPC-producing Klebsiella pneumoniae strain isolated in Korea using whole genome sequencing. Biomed Res Int. 2014;2014:352862. doi:10.1155/2014/352862.

    PubMed  PubMed Central  Google Scholar 

  88. Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52(7):2365–70. doi:10.1128/JCM.00262-14.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501–10. doi:10.1128/JCM.03617-13.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Underwood AP, Dallman T, Thomson NR, Williams M, Harker K, Perry N, Adak B, Willshaw G, Cheasty T, Green J, Dougan G, Parkhill J, Wain J. Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. J Clin Microbiol. 2013;51(1):232–7. doi:10.1128/JCM.01696-12.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Donnenberg MS. Escherichia coli: virulence mechanisms of a versatile pathogen. San Diego: Academic; 2002.

    Google Scholar 

  92. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136–51. doi:10.1111/j.1365-2958.2006.05172.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jenkins C, Dallman TJ, Launders N, Willis C, Byrne L, Jorgensen F, Eppinger M, Adak GK, Aird H, Elviss N, Grant KA, Morgan D, McLauchlin J. Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl Environ Microbiol. 2015;81(12):3946–52. doi:10.1128/AEM.04188-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dallman TJ, Byrne L, Ashton PM, Cowley LA, Perry NT, Adak G, Petrovska L, Ellis RJ, Elson R, Underwood A, Green J, Hanage WP, Jenkins C, Grant K, Wain J. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin Infect Dis. 2015;61(3):305–12. doi:10.1093/cid/civ318.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Holmes A, Allison L, Ward M, Dallman TJ, CLark R, Fawkes A, Murphy L, Hanson M. The utility of Whole Genome Sequencing of Escherichia coli O157 1 for outbreak detection and epidemiological surveillance. J Clin Microbiol. 2015. doi:10.1128/JCM.01066-15.

  96. Dallman T, Ashton P, Byrne L, Perry N, Petrovska L, Ellis R, Allison L, Hanson M, Holmes A, Gunn G, Chase-Topping M, Woolhouse M, Grant K, Gally D, Wain J, Jenkins C. Applying phylogenomics to understand the emergence of Shiga Toxin producing Escherichia coli O157:H7 strains causing severe human disease in the United Kingdom. Microbial Genomics. 2015. doi:10.1099/mgen.0.000029.

  97. Wick LM, Qi W, Lacher DW, Whittam TS. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol. 2005;187(5):1783–91. doi:10.1128/JB.187.5.1783-1791.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dallman TJ, Byrne L, Launders N, Glen K, Grant KA, Jenkins C. The utility and public health implications of PCR and whole genome sequencing for the detection and investigation of an outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11. Epidemiol Infect. 2015;143(8):1672–80. doi:10.1017/S0950268814002696.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Michelacci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michelacci, V., Tozzoli, R., Caprioli, A., Morabito, S. (2017). Verocytotoxin-Producing Escherichia coli in the Genomic Era: From Virulotyping to Pathogenomics. In: Deng, X., den Bakker, H., Hendriksen, R. (eds) Applied Genomics of Foodborne Pathogens. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-43751-4_7

Download citation

Publish with us

Policies and ethics