Skip to main content

A Systems Biology View on Bacterial Response to Temperature Shift

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Extremophilic microbes have adapted to thrive in ecological niches characterized by harsh chemical/physical conditions such as, for example, very low/high temperature. Studying the mechanisms exploited by these microorganisms to overcome the selective pressure acting in such ecological niches is stimulating from a basic research viewpoint and because of biotechnological applications. The spreading of -omics technologies has greatly impacted this research field and our understanding of life in extreme conditions is constantly increasing. In this contribution we present an overview of the recent advances in the use of high throughput technologies (e.g. massive genome and transcriptome sequencing) for characterizing cold and heat shock response in microbes. Furthermore, we stress the importance of data integration (with a special focus on the use of metabolic modelling techniques) for a holistic comprehension of the basic cell functioning in response to temperature shifts. A recent example of the potential use of a systems biology framework in the context of cold shock response is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansong C, Deatherage BL, Hyduke D, Schmidt B, McDermott JE, Jones MB, Chauhan S, Charusanti P, Kim YM, Nakayasu ES, Li J, Kidwai A, Niemann G, Brown RN, Metz TO, McAteer K, Heffron F, Peterson SN, Motin V, Palsson BO, Smith RD, Adkins JN (2013) Studying Salmonellae and Yersiniae host-pathogen interactions using integrated ‘omics and modeling. Curr Top Microbiol Immunol 363:21–41

    CAS  PubMed  Google Scholar 

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55(1–3):3–9

    Article  CAS  PubMed  Google Scholar 

  • Bartell JA, Yen P, Varga JJ, Goldberg JB, Papin JA (2014) Comparative metabolic systems analysis of pathogenic Burkholderia. J Bacteriol 196(2):210–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11(7):1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvet V, Ben RN (2003) Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochem Biophys 39(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34(Database issue):D511–D516

    Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42(Database issue):D459–D471

    Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnol 4(4):449–460

    Article  CAS  Google Scholar 

  • Chromy BA, Choi MW, Murphy GA, Gonzales AD, Corzett CH, Chang BC, Fitch JP, McCutchen-Maloney SL (2005) Proteomic characterization of Yersinia pestis virulence. J Bacteriol 187(23):8172–8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D'Amico S (2008) Fundamentals of cold-adapted enzymes. In: Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 211–227

    Chapter  Google Scholar 

  • Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vazquez F, Abasolo I, Giuliani M, Jantti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S Jr, Tutino ML, Villaverde A (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31(2):140–153

    Article  CAS  PubMed  Google Scholar 

  • Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol Biol 267:225–237

    CAS  PubMed  Google Scholar 

  • Durot M, Le Fevre F, de Berardinis V, Kreimeyer A, Vallenet D, Combe C, Smidtas S, Salanoubat M, Weissenbach J, Schachter V (2008) Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data. BMC Syst Biol 2:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang K, Zhao H, Sun C, Lam CM, Chang S, Zhang K, Panda G, Godinho M, Martins dos Santos VA, Wang J (2011) Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC Syst Biol 5:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208

    Article  CAS  PubMed  Google Scholar 

  • Fondi M, Lio P (2015) Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171C:52–64

    Article  Google Scholar 

  • Fondi M, Maida I, Perrin E, Mellera A, Mocali S, Parrilli E, Tutino ML, Lio P, Fani R (2014) Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Environ Microbiol. doi:10.1111/1462-2920.12513

    PubMed  Google Scholar 

  • Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186(22):7796–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Yang ZK, Wu L, Thompson DK, Zhou J (2006) Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol 188(12):4560–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Descalzo L, Garcia-Lopez E, Alcazar A, Baquero F, Cid C (2014) Proteomic analysis of the adaptation to warming in the Antarctic bacteria Shewanella frigidimarina. Biochim Biophys Acta 1844(12):2229–2240

    Article  CAS  PubMed  Google Scholar 

  • Garnier M, Matamoros S, Chevret D, Pilet MF, Leroi F, Tresse O (2010) Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Appl Environ Microbiol 76(24):8011–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Parrilli E, Ferrer P, Baumann K, Marino G, Tutino ML (2011) Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem J 46:953–959

    Article  CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166(5):293–300

    Article  CAS  PubMed  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1(4):323–333

    Article  CAS  PubMed  Google Scholar 

  • Hatzimanikatis V, Lee KH (1999) Dynamical analysis of gene networks requires both mRNA and protein expression information. Metab Eng 1(4):275–281

    Article  CAS  PubMed  Google Scholar 

  • Jensen PA, Papin JA (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27(4):541–547

    Article  CAS  PubMed  Google Scholar 

  • Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaan T, Homuth G, Mader U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148(Pt 11):3441–3455

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101; discussion 101–103, 119–128, 244–152

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H (2008) Cryoprotectants and ice-binding proteins. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Heidelberg, pp 229–246

    Chapter  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11(6):819–826

    Article  CAS  PubMed  Google Scholar 

  • Kawamura D, Yamashita I, Nimi O, Toh-e A (1994) Cloning and nucleotide sequence of a gene conferring ability to grow at a low temperature on Saccharomyces cerevisiae tryptophan auxotrophs. J Biosci Bioeng 77(1):1–9

    CAS  Google Scholar 

  • Klein W, Weber MH, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181(17):5341–5349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2(2):157–166

    Article  CAS  PubMed  Google Scholar 

  • Li JS, Bi YT, Dong C, Yang JF, Liang WD (2011) Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus. PLoS One 6(10):e25777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Graham JE, Bigelow L, Morse PD, Wilkinson BJ (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68(4):1697–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583–593

    Article  CAS  PubMed  Google Scholar 

  • Mavromatis K, Tsigos I, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2002) Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. Eur J Biochem 269(9):2330–2335

    Article  CAS  PubMed  Google Scholar 

  • Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15(10):1325–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, Esaki N (2007) Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol 73(15):4849–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70(1):222–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  PubMed  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 13(6):655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navid A, Almaas E (2012) Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC Syst Biol 6:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberhardt MA, Chavali AK, Papin JA (2009) Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol Biol 500:61–80

    Article  CAS  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014a) The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(Database issue):D206–D214

    Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014b) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(Database issue):D206–D214

    Google Scholar 

  • Papa R, Rippa V, Sannia G, Marino G, Duilio A (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA (2012) Extremophiles in Antarctica: life at low temperatures. Springer, Dordrecht

    Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76(1):120–132

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77(11):3881–3883

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratheesh RK, Nagarajan SN, Arunraj PA, Sinha D, Veedin Rajan VB, Esthaki VK, D’Silva P (2012) HSPIR: a manually annotated heat shock protein information resource. Bioinformatics 28(21):2853–2855

    Article  Google Scholar 

  • Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    Article  PubMed  PubMed Central  Google Scholar 

  • Rippa V, Papa R, Giuliani M, Pezzella C, Parrilli E, Tutino ML, Marino G, Duilio A (2012) Regulated recombinant protein production in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 824:203–218

    Article  CAS  PubMed  Google Scholar 

  • Ruch FE, Vagelos PR (1973) The isolation and general properties of Escherichia coli malonyl coenzyme A-acyl carrier protein transacylase. J Biol Chem 248(23):8086–8094

    CAS  PubMed  Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 326(1237):595–608

    Article  CAS  PubMed  Google Scholar 

  • Schatschneider S, Persicke M, Watt SA, Hublik G, Puhler A, Niehaus K, Vorholter FJ (2013) Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 167(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Schaub J, Clemens C, Kaufmann H, Schulz TW (2012) Advancing biopharmaceutical process development by system-level data analysis and integration of omics data. Adv Biochem Eng Biotechnol 127:133–163

    CAS  PubMed  Google Scholar 

  • Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39(Database issue):D670–D676

    Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36(1):39–106

    Article  CAS  PubMed  Google Scholar 

  • Tanghe A, Van Dijck P, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176

    Article  CAS  PubMed  Google Scholar 

  • Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12(10):2658–2676

    CAS  PubMed  Google Scholar 

  • Tomar N, De RK (2013) Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene 521(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Chen Z, Cao Z, Wang Q, Zhang J, Bai X, Wang R, Liu S (2013) Robustness analysis of a constraint-based metabolic model links cell growth and proteomics of Thermoanaerobacter tengcongensis under temperature perturbation. Mol Biosyst 9(4):713–722

    Article  CAS  PubMed  Google Scholar 

  • Topfer N, Jozefczuk S, Nikoloski Z (2012) Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli. BMC Syst Biol 6:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78(2):549–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZX, Zhou XZ, Meng HM, Liu YJ, Zhou Q, Huang B (2014) Comparative transcriptomic analysis of the heat stress response in the filamentous fungus Metarhizium anisopliae using RNA-Seq. Appl Microbiol Biotechnol 98(12):5589–5597

    Article  CAS  PubMed  Google Scholar 

  • Weber MH, Fricke I, Doll N, Marahiel MA (2002) CSDBase: an interactive database for cold shock domain-containing proteins and the bacterial cold shock response. Nucleic Acids Res 30(1):375–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiench B, Chen YR, Paulsen M, Hamm R, Schroder S, Yang NS, Efferth T (2013) Integration of different “-omics” technologies identifies inhibition of the IGF1R-Akt-mTOR signaling cascade involved in the cytotoxic effect of shikonin against leukemia cells. Evid Based Complement Alternat Med 2013:818709

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmes B, Hartung A, Lalk M, Liebeke M, Schweder T, Neubauer P (2010) Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Fact 9:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmes B, Kock H, Glagla S, Albrecht D, Voigt B, Markert S, Gardebrecht A, Bode R, Danchin A, Feller G, Hecker M, Schweder T (2011) Cytoplasmic and periplasmic proteomic signatures of exponentially growing cells of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77(4):1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156(Pt 2):287–301

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Fani .

Editor information

Editors and Affiliations

Ethics declarations

Marco Fondi, Emanuele Bosi, Angelina Lo Giudice, and Renato Fani declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fondi, M., Bosi, E., Giudice, A.L., Fani, R. (2016). A Systems Biology View on Bacterial Response to Temperature Shift. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_21

Download citation

Publish with us

Policies and ethics