Skip to main content

Plant-Microbes Interactions and Functions in Changing Climate

  • Chapter
  • First Online:

Abstract

Climate change is one of the hot topics of the current century because it is not only an issue to our health but also to agriculture, forestry, biodiversity, ecosystem and supply of energy. Climate change is occurring mainly due the emission of greenhouse gases like nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) and the drastic changes due to these gases are predicted to change the level and various parameters of life in the changing environment. The increase or decrease in the function and composition of terrestrial microbial community is both directly and indirectly affected by climate change. The increasing temperature successively causes to increase the structure of microbial community and meanwhile accelerate several processes like methanogenesis, respiration, decomposition and mineralization. When climate change made some changes in the prevailing environmental conditions it will arise changes in plant physiology, root exudation, alteration in signals, C/N ratio, abundance, composition and diversities of soil microbial communities. As a result the environmental changes brought about by climate change also affect the performance of beneficial microbes on plant growth, health and root colonization.

In the current book chapter, we have discussed the impacts of climate change parameters like CO2, drought, precipitation and temperature on plant microbes interaction. Furthermore, this review also indicate that how microbes in the plant rhizosphere respond to the prevailing climatic conditions in the terrestrial environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aanderud ZT, Schoolmaster DR Jr, Lennon JT (2011) Plants mediate the sensitivity of soil respiration to rainfall variability. Ecosystems 14:156–167

    Article  CAS  Google Scholar 

  • Abatenh E, Gizaw B, Tsegaye Z, Tefera G (2018) Microbial function on climate change. A review. Open J Environ Biol 3(1):001–007

    Google Scholar 

  • Acosta-Martínez V, Cruz L, Sotomayor-Ramírez D, Pérez-Alegría L (2007) Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl Soil Ecol 35:35–45

    Article  Google Scholar 

  • Acosta-Martínez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D et al (2014) Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol 84:69–82

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Allison SD, Jennifer BH, Martiny (2008) Resistance and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison SD, Wallenstein MD, Bradford MA (2010) Soil carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340

    Article  CAS  Google Scholar 

  • Alster CJ, German DP, Lu Y, Allison SD (2013) Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol Biochem 64:68–79

    Article  CAS  Google Scholar 

  • Altermatt F, Bieger A, Carrara F, Rinaldo A, Holyoak M (2011) Effects of connectivity and recurrent local disturbances on community structure and population density in experimental meta communities. PLoS One 6:19525

    Article  CAS  Google Scholar 

  • Angert AL, LaDeau SL, Ostfeld RS (2013) Climate change and species interactions: ways forward. Ann N Y Acad Sci 1297:1–7

    Article  PubMed  Google Scholar 

  • Armstrong A, Valverde A, Ramond JB, Makhalanyane TP, Jansson JK, Hopkins DW et al (2016) Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci Rep 6:34434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, Ungar ED et al (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60:453–461

    Article  PubMed  Google Scholar 

  • Bader MKF, Korner C (2010) No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Chang Biol 16:2830–2843

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISMEJ 2:805–814

    Article  CAS  Google Scholar 

  • Bardgett RD, Manning P, Morrien E, de Vries FT (2013) Hierarchical responses of plant soil interactions to climate change: consequences for the global C cycle. J Ecol 101:334–343

    Article  Google Scholar 

  • Barker SJ, Stummer B, Gao L, Dispain I, O’Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J 15:791–797

    Article  CAS  PubMed  Google Scholar 

  • Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Melia CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. PNAS 102:5443–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baseer M, Adnan M, Munsif F, Fahad S, Saeed M, Wahid F, Arif M, et al (2019) Substituting urea by organic wastes for improving maize yield in alkaline soil. J Plant Nut 2423–2434

    Google Scholar 

  • Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert grassland. Microb Ecol 56:153–167

    Article  PubMed  Google Scholar 

  • Blankinship JC, Pascal AN, Bruce AH (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565

    Article  PubMed  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–U132

    Article  CAS  PubMed  Google Scholar 

  • Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL et al (2013) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394

    Article  CAS  PubMed  Google Scholar 

  • Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H et al (2016) Belowground response to drought in a tropical forest soil. Changes in microbial functional potential and metabolism. Front Microbiol 7:525

    PubMed  PubMed Central  Google Scholar 

  • Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Chang Biol 16:1576–1588

    Article  Google Scholar 

  • Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001) Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61 N to 54 S. J Invertebr Pathol 78:98–108

    Article  CAS  PubMed  Google Scholar 

  • Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peat land and boreal soils. Glob Chang Biol 20:2971–2982

    Article  PubMed  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW et al (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284

    Article  CAS  Google Scholar 

  • Carrara F, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2012) Dendriti connectivity controlsbio- diversity patterns in experimental meta communities. Proc Natl Acad Sci U S A 109:5761–5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Article  Google Scholar 

  • Cassan F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA(20) and metabolize the resultant aglycones to GA(1) in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Smith FA, Hay G, Carne-Cavagnaro VL, Smith SE (2004) Inoculum type does not affect overall resistance of an arbuscular mycorrhiza defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. New Phytol 161:485–494

    Article  PubMed  Google Scholar 

  • CCSP (2007) The first state of the carbon cycle report (SOCCR): the north American carbon budget and implications for the global carbon cycle. A report by the US climate change science program and the subcommittee on global change research. National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, p 242

    Google Scholar 

  • Chodak M, Gołebiewski M, Morawska-Płoskonka J, Kuduk K, Niklinska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X et al (2007) Regional climate projections. In: Climate change 2007: the physical science basis. Contribution of working group-I to the fourth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ciais P et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance. Suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  CAS  PubMed  Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Conant RT, Ryan MG, Agren GI et al (2011) Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Glob Chang Biol 17:3392–4004

    Article  Google Scholar 

  • Cowan AK et al (1999) Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot 50:595–603

    Article  CAS  Google Scholar 

  • Crawford JW, Harris JA, Ritz K et al (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  • Cregger MA, Schadt CWN, McDowell G, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78:8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregger MA, Sanders NJ, Dunn RR, Classen AT (2014) Microbial communities respond to experimental warming, but site matters. Peer J 2:e358

    Article  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • De Vries FT, Griffiths RI (2018) Impacts of climate change on soil microbial communities and their functioning. In: Horwath WR, Kuzyakov Y (eds) Developments in soil science, vol 35. Elsevier, pp 111–129

    Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617

    Article  CAS  Google Scholar 

  • Dam M (2014) Global change effects on plant-soil interactions. Dissertation, University of Copenhagen

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature high stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Drigo B, George AK, Brigitte AK, Agata SP, Henricus TSB, Johannesa VV (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19:621–636

    Article  PubMed  Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathol 60(1):54–69

    Article  Google Scholar 

  • Eisenhauer N, Simone C, Robert K, Kally W, Peter BR (2012) Global change belowground: impacts of elevated CO2, nitrogen and summer drought on soil food webs and biodiversity. Glob Chang Biol 18:435–447

    Article  Google Scholar 

  • Eviner VT, Chapin FS (2003) III Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

    Google Scholar 

  • Facelli E, Facelli JM, Smith SE, McLaughlin MJ (1999) Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytol 141:535–547

    Article  Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agric Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Amanullah, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby HNW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Muhammad ZI, Abdul K, Ihsanullah D, Saud S, Saleh A, Wajid N, Muhammad A, Imtiaz AK, Chao W, Depeng W, Jianliang H (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch Agron Soil Sci 64(11):1473–1488. https://doi.org/10.1080/03650340.2018.1443213

    Article  CAS  Google Scholar 

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Rahman MHU (2019a) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing Ltd, Abington Hall Abington, pp 299–312

    Chapter  Google Scholar 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019b) Rice responses and tolerance to high temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing Ltd, Abington Hall Abington, pp 201–224

    Chapter  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Felsmann K, Baudis M, Gimbel K, Kayler ZE, Ellerbrock R, Bruehlheide H et al (2015) Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS One 10:0122539

    Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Figueiredo VB et al (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828–828

    Article  CAS  Google Scholar 

  • Freeman C, Kim SY, Lee SH, Kang H (2009) Effects of elevated atmospheric CO2 concentrations on soil microorganisms. J Microbial 42(4):267–277

    Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–264

    Google Scholar 

  • Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A (2014) Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol 201:916–927

    Article  CAS  PubMed  Google Scholar 

  • Fuchslueger L, Bahn M, Hasibeder R, Kienzl S, Fritz K, Schmitt M et al (2016) Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J Ecol 104:1453–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, Sylvain ZA, de Tomasel CM, Wall DH (2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2 N deposition and warming? A global perspective. Glob Chang Biol 21(4):1590–1600

    Article  PubMed  Google Scholar 

  • Gibson AH (1977) The influence of the environment and managerial practices on the legume-rhizobium symbiosis. In: Hardyand RWF, Gibson AH (eds) A treatise on nitrogen fixation section IV. Wilcy, New York, pp 393–450

    Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

    Article  PubMed  Google Scholar 

  • Glick BR et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gonzalez JM, Portillo MC, Pi Neiro-Vidal M (2015) Latitude-dependent underestimation of microbial extracellular enzyme activity in soils. Int J Environ Sci Technol 12:2427–2434

    Article  Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K et al (2010) Implications of climate change for agricultural productivity in the early twenty first century. Phil Trans R Soc Biol Sci 365:2973–2989

    Article  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419(1):64–77

    Article  CAS  PubMed  Google Scholar 

  • Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M (2016) Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil. https://doi.org/10.1007/s11104-016-2888-z

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Romheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N nutritional status modify nodulation, nodule-carbon supply and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    Article  CAS  Google Scholar 

  • Harsch MA, Hille R, Lambers J (2016) Climate warming and seasonal precipitation change interact to limit species distribution shifts across Western North America. PLoS One 11:0159184

    Article  CAS  Google Scholar 

  • Hartmann M, Brunner I, Hagedorn F, Bardgett RD et al (2017) A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 26:1190–1206

    Article  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Ho A, Frenzel P (2012) Heat stress and methane-oxidizing bacteria: effects on activity and population dynamics. Soil Biol Biochem 50:22–25

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (2001) Climate change 2001. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linder PJ, Dai X, Maskell K, Johnson CA (eds) The scientific basis. Cambridge University Press, Cambridge, pp 1–83

    Google Scholar 

  • Hueso S, Hernández T, García C (2011) Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: the importance of organic amendments. Appl Soil Ecol 50:27–36

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation contribution of working group III to the fourth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C (ed) A special report of working groups I and II of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2013) Climate change (2013) the physical science basis. Intergovernmental Panel on climate change

    Google Scholar 

  • IPCC (2014) Summary for policy makers. In: Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2017) Climate change: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 67:5488–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Johnson D, Campbell CD, Gwynn-Jones D, Lee JA, Callaghan TV (2002) Arctic soil microorganisms respond more to long term ozone depletion than to atmospheric CO2. Nature 416:82–83

    Article  CAS  PubMed  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2460

    Article  CAS  Google Scholar 

  • Kasel S, Bennett LT, Tibbits J (2008) Land use influences soil fungal community composition across central Victoria, south-eastern Australia. Soil Biol Biochem 40:1724–1732

    Google Scholar 

  • Khan MA, Riaz AA, Saima H, Abdul MK, Zubair A, Wahid F, Chauhan BS (2016) Integrated effect of allelochemicals and herbicides on weed suppression and soil microbial activity in wheat (Triticum aestivum L.). Crop Protection 90:34–39

    Google Scholar 

  • Khan A, Fahad S, Khan A, Saud S, Adnan M, Wahid F, Noor M, et al (2019) Managing tillage operation and manure to restore soil carbon stocks in wheat-maize cropping system. Agron J 3(5):1–10

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Le Houerou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185

    Article  Google Scholar 

  • Lepetz V, Massot M, Schmeller DS, Clobert J (2009) Biodiversity monitoring: some proposals to adequately study species responses to climate change. Biodivers Conserv 18:3185–3203

    Article  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Lin YT, Whitman WB, Coleman DC, Shi SY, Tang SL, Chiu CY (2015) Changes of soil bacterial communities in bamboo plantations at different elevations. FEMS Microbiol Ecol 91:pii: fiv033

    Article  CAS  Google Scholar 

  • Lindstrom ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9

    Article  PubMed  Google Scholar 

  • Liu XL, He YQ, Zhang HL et al (2010) Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients. Pedosphere 20:666–673

    Article  CAS  Google Scholar 

  • Luo Y, Zhou X (2006) Soil respiration and the environment. Academic, London

    Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS et al (2004) Progressive nitrogen limitation of ecosystem responses torising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Majumder B, Mandal B, Bandyopadhyay PK et al (2008) Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Sci Soc Am J 72:775

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM, Rahman TJ et al (2002) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Franzetti A, Pavlostathis SG et al (2008) Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol 78:841–852

    Article  CAS  PubMed  Google Scholar 

  • Matthiessen B, Ptacnik R, Hille Brand H (2010) Diversity and community biomass depend on dispersal and disturbance in microalgal communities. Hydrobiologia 65:365–378

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840

    Article  CAS  PubMed  Google Scholar 

  • Meisnera A, De Deyn GB, de Boerb W, van der Putten WH (2013) Soil biotic legacy effects of extreme weather events influence plant invasiveness. PNAS 110:9835–9838

    Article  Google Scholar 

  • Mganga KZ, Razavi BS, Kuzyakov Y (2016) Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena 141:2–29

    Article  CAS  Google Scholar 

  • Microbiology Online (2015) Microbes and climate change. http://www.microbiologyonline.org.uk/aboutmicrobiology/microbesandclimatechange

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Dion P (eds) (2008) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin. https://doi.org/10.1007/978-3-540-75575-3

    Book  Google Scholar 

  • Norby RJ (2007) The likely impact of elevated (CO2), nitrogen deposition, increased temperature, and management on carbon sequestration in temperate and boreal forest ecosystems. Review. New Phytol 173(3):463–480

    Article  PubMed  CAS  Google Scholar 

  • Nowak R, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Google Scholar 

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil c and n cycle: incorporating the soil fauna. Ecology 88(7):1611–1621

    Article  PubMed  Google Scholar 

  • Portillo MC, Santana MM, Gonzalez JM (2012a) Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Sci Nat 99:43–53

    Article  CAS  Google Scholar 

  • Portillo MC, Santana MM, Gonzalez JM (2012b) Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Nat Wiss 99:43–53

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Ritz K, McNicol W, Nunan N, Grayston S, Millard P, Atkinson D et al (2004) Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol Ecol 49:191–205

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo A, Recous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C–N transformations in soils: comparison of nine models. Ecol Model 102:325–339

    Article  CAS  Google Scholar 

  • Roper M, Seminara A, Bandi MM, Cobb A, Dillard HR, Pringle A (2010) Dispersal of fungal spores on a cooperatively generated wind. Proc Natl Acad Sci U S A 107:17474–17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhil K, Ahmad A, Iqbal M, Tripathy BC (2015) Photosynthesis and growth responses of mustard (Brassica juncea L. cv Pusa Bold) plants to free air carbon dioxide enrichment (FACE). Protoplasma 252(4):935–946

    Article  CAS  PubMed  Google Scholar 

  • Santana MM, Portillo MC, Gonzalez JM et al (2013) Characterization of new soil thermophilic bacteria potentially involved in soil fertilization. J Plant Nutr Soil Sci 176:47–56

    Article  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61(1):218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinauer K, Tilman D, Wragg PD et al (2015) Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96:99–112

    Article  PubMed  Google Scholar 

  • Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92

    Article  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner GK et al (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stone MM, Weiss MS, Goodale CL et al (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Chang Biol 18:1173–1184

    Article  Google Scholar 

  • Swati T, Ramesh S, Shaily J (2014) Effect of climate change on plant-microbe interaction: an overview. Euro J Mol Biotechnol 5:149–156

    Article  CAS  Google Scholar 

  • Thomson BC, Ostle NJ, McNamara NP, Whiteley AS, Griffiths RI (2010) Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. J Microbiol Methods 83:69–73

    Article  PubMed  Google Scholar 

  • Timmusk S, Wagner GH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvrea's L, TF Thingstad (2002) Prokaryotic diversity: magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Google Scholar 

  • Tóth Z, Táncsics A, Kriszt B, Kröel-Dulay G, Ónodi G, Hornung E (2017) Extreme effects of drought on composition of the soil bacterial community and decomposition of plant tissue: bacterial community and plant tissue decomposition. Eur J Soil Sci 68:504–513

    Article  CAS  Google Scholar 

  • Townsend A, Vitousek PM, Holland EA (1992) Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Clim Chang 22:293–303

    Article  CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, andatmospheric CO2 in field studies. New Phytol 164:347–355

    Article  PubMed  Google Scholar 

  • Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol 45:20–28

    Google Scholar 

  • Trzcinski MK, Srivastava DS, Corbara B et al (2016) The effects of food web structure on ecosystem function exceeds those of precipitation. J Anim Ecol 85:1147–1160

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Van de Staaij JWM, Rozema J, Van Beem A, Aerts R (2001) Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol 154:171–177

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 39:69–72

    Article  CAS  Google Scholar 

  • Wahid F, Sharif M, Khan MA, Khan MJ (2016a) Status and P solubilization potential of bacteria and AM fungi isolated from various locations of Khyber Pakhtunkhwa province. Pak J Bot 48(5):2121–2130

    Google Scholar 

  • Wahid F, Sharif M, Steinkillner S, khan MA, Marwat KB (2016b) Inoculation of Arbuscular mycorrhizal fungi in presence of rock phosphate improve phosphorus uptake and growth of maize. Pak J Bot 48(2):739–747

    Google Scholar 

  • Wahid F, Sharif M, Fahad S, Adnan M, Khan IA, Aksoy E, Ali A, Sultan T, Alam M, Saeed M et al (2019) Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. J plant Nutr 1760-1769

    Google Scholar 

  • Wall GW, McLain JET, Kimball BA et al (2013) Infrared warming affects intrarow soil carbon dioxide efflux during vegetative growth of spring wheat. Agron J 105:607

    Article  Google Scholar 

  • Wang L, Feng Z, Schjoerring JK (2013) Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): a meta-analytic test of current hypotheses. Agric Ecosyst Environ 178:57–63

    Article  CAS  Google Scholar 

  • Watts-Williams SJ, Cavagnaro TR (2014) Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair. Plant Soil 384:79–92

    Article  CAS  Google Scholar 

  • Watts-Williams SJ, Cavagnaro TR (2015) Using mycorrhiza-defective mutant genotypes of non-legume plant species to study the formation and functioning of arbuscular mycorrhiza: a review. Mycorrhiza 25:5870597

    Article  CAS  Google Scholar 

  • Weiman S (2015) Microbes help to drive global carbon cycling and climate change. Microbe Mag 10(6):233–238

    Article  Google Scholar 

  • Whittenbury R, Davies SL, Davey JF (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Pétriacq P, Beerling D, Cotton A, Ton J (2018) Impacts of atmospheric CO2 and soil nutritional value on plant responses to rhizosphere colonisation by soil bacteria. Front Plant Sci 9:1493

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates GW, Tate KR, Newton CD (1997) Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biol Fertil Soils 25(3):307–315

    Article  CAS  Google Scholar 

  • Yuste JC, Fernandez-Gonzalez AJ, Fernandez-Lopez M, Ogaya R, Penuelas J, Sardans J et al (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol Biochem 69:223–233

    Article  CAS  Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56:715–721

    Article  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63:575–584

    Article  CAS  Google Scholar 

  • Zaller JG, Caldwell MM, Flint SD, Scopel AL, Sala OE, Ballaré CL (2002) Solar UV-B radiation affects below-ground parameters in a fen ecosystem in Tierra del Fuego, Argentina: implications of stratospheric ozone depletion. Glob Chang Biol 8:867–871

    Article  Google Scholar 

  • Zhou G, Zhang J, Chen L, Zhang C, Yu Z (2016) Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition. Pedosphere 26:386–398

    Article  CAS  Google Scholar 

  • Zimmer C (2010) The microbe factor and its role in our climate future. https://e360.yale.edu/features/the_microbe_factor_and_its_role_in_our_climate_future. p 2279

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazli Wahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wahid, F. et al. (2020). Plant-Microbes Interactions and Functions in Changing Climate. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_16

Download citation

Publish with us

Policies and ethics