Skip to main content

High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities

  • Protocol
  • First Online:
High-Throughput Protein Production and Purification

Abstract

Transcription factors (TFs) control gene transcription, binding to specific DNA motifs located in cis-regulatory elements across the genome. The identification of TF-binding motifs is thus an important aspect to understand the role of TFs in gene regulation. SELEX, Systematic Evolution of Ligands by EXponential enrichment, is an efficient in vitro method, which can be used to determine the DNA-binding specificity of TFs. Thanks to the development of high-throughput (HT) DNA cloning system and protein production technology, the classical SELEX assay has be extended to high-throughput scale (HT-SELEX).

We report here the detailed protocol for the cloning, production, and purification of 420 Ciona robusta DNA BD. 263 Ciona robusta TF DNA-binding domain proteins were purified in milligram quantities and analyzed by HT-SELEX. The identification of 139 recognition sequences generates an atlas of protein-DNA-binding specificities that is crucial for the understanding of the gene regulatory network (GRN) of Ciona robusta. Overall, our analysis suggests that the Ciona robusta repertoire of sequence-specific transcription factors comprises less than 500 genes. The protocols for high-throughput protein production and HT-SELEX described in this article for the study of Ciona robusta TF DNA-binding specificity are generic and have been successfully applied to a wide range of TFs from other species, including human, mouse, and Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263. https://doi.org/10.1038/nrg2538

    Article  CAS  PubMed  Google Scholar 

  2. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 175:598–599. https://doi.org/10.1016/j.cell.2018.09.045

    Article  CAS  PubMed  Google Scholar 

  3. Imai KS (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131:4047–4058. https://doi.org/10.1242/dev.01270

    Article  CAS  PubMed  Google Scholar 

  4. Miwata K, Chiba T, Horii R, Yamada L, Kubo A, Miyamura D, Satoh N, Satou Y (2006) Systematic analysis of embryonic expression profiles of zinc finger genes in Ciona intestinalis. Dev Biol 292:546–554. https://doi.org/10.1016/j.ydbio.2006.01.024

    Article  CAS  PubMed  Google Scholar 

  5. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J (2013) DNA-binding specificities of human transcription factors. Cell 152:327–339. https://doi.org/10.1016/j.cell.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Nitta KR, Jolma A, Yin Y, Morgunova E, Kivioja T, Akhtar J, Hens K, Toivonen J, Deplancke B, Furlong EEM, Taipale J (2015) Conservation of transcription factor binding specificities across 600 million years of bilateria evolution. eLife 4. https://doi.org/10.7554/eLife.04837

  7. Najafabadi HS, Mnaimneh S, Schmitges FW, Garton M, Lam KN, Yang A, Albu M, Weirauch MT, Radovani E, Kim PM, Greenblatt J, Frey BJ, Hughes TR (2015) C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol 33:555–562. https://doi.org/10.1038/nbt.3128

    Article  CAS  PubMed  Google Scholar 

  8. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  9. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  10. Mallikaratchy P (2017) Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens. Molecules 22:215. https://doi.org/10.3390/molecules22020215

    Article  CAS  PubMed Central  Google Scholar 

  11. Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res 53:186–193. https://doi.org/10.1111/jzs.12101

    Article  Google Scholar 

  12. Dehal P (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167. https://doi.org/10.1126/science.1080049

    Article  CAS  PubMed  Google Scholar 

  13. Imai KS (2006) Regulatory blueprint for a chordate embryo. Science 312:1183–1187. https://doi.org/10.1126/science.1123404

    Article  CAS  PubMed  Google Scholar 

  14. Satou Y, Imai KS (2015) Gene regulatory systems that control gene expression in the Ciona embryo. Proc Jpn Acad Ser B Phys Biol Sci 91:33–51. https://doi.org/10.2183/pjab.91.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang H-Y, Dosztányi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh L-S, Young S-Y, Mitchell AL (2017) InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107

    Article  CAS  PubMed  Google Scholar 

  16. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  17. Satou Y, Satoh N (2005) Cataloging transcription factor and major signaling molecule genes for functional genomic studies in Ciona intestinalis. Dev Genes Evol 215:580–596. https://doi.org/10.1007/s00427-005-0016-9

    Article  CAS  PubMed  Google Scholar 

  18. Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordateCiona intestinalis. Genesis 33:153–154. https://doi.org/10.1002/gene.10119

    Article  CAS  PubMed  Google Scholar 

  19. Sayou C, Monniaux M, Nanao MH, Moyroud E, Brockington SF, Thevenon E, Chahtane H, Warthmann N, Melkonian M, Zhang Y, Wong GK-S, Weigel D, Parcy F, Dumas R (2014) A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343:645–648. https://doi.org/10.1126/science.1248229

    Article  CAS  PubMed  Google Scholar 

  20. Mathelier A, Fornes O, Arenillas DJ, Chen C, Denay G, Lee J, Shi W, Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B, Sandelin A, Wasserman WW (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44:D110–D115. https://doi.org/10.1093/nar/gkv1176

    Article  CAS  PubMed  Google Scholar 

  21. Vincentelli R, Cimino A, Geerlof A, Kubo A, Satou Y, Cambillau C (2011) High-throughput protein expression screening and purification in Escherichia coli. Methods 55:65–72. https://doi.org/10.1016/j.ymeth.2011.08.010

    Article  CAS  Google Scholar 

  22. Turchetto J, Sequeira AF, Ramond L, Peysson F, Brás JLA, Saez NJ, Duhoo Y, Blémont M, Guerreiro CIPD, Quinton L, De Pauw E, Gilles N, Darbon H, Fontes CMGA, Vincentelli R (2017) High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery. Microb Cell Factories 16. https://doi.org/10.1186/s12934-016-0617-1

  23. Saez NJ, Nozach H, Blemont M, Vincentelli R (2014) High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp. https://doi.org/10.3791/51464

  24. Brozovic M, Dantec C, Dardaillon J, Dauga D, Faure E, Gineste M, Louis A, Naville M, Nitta KR, Piette J, Reeves W, Scornavacca C, Simion P, Vincentelli R, Bellec M, Aicha SB, Fagotto M, Guéroult-Bellone M, Haeussler M, Jacox E, Lowe EK, Mendez M, Roberge A, Stolfi A, Yokomori R, Brown CT, Cambillau C, Christiaen L, Delsuc F, Douzery E, Dumollard R, Kusakabe T, Nakai K, Nishida H, Satou Y, Swalla B, Veeman M, Volff J-N, Lemaire P (2018) ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res 46:D718–D725. https://doi.org/10.1093/nar/gkx1108

    Article  CAS  PubMed  Google Scholar 

  25. Pavesi G, Mauri G, Pesole G (2001) An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(Suppl 1):S207–S214

    Article  Google Scholar 

  26. Pérez-Rueda E, Collado-Vides J (2000) The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28:1838–1847

    Article  Google Scholar 

  27. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E, Taipale J (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527:384–388. https://doi.org/10.1038/nature15518

    Article  CAS  PubMed  Google Scholar 

  28. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J (2017) Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356:eaaj2239. https://doi.org/10.1126/science.aaj2239

    Article  CAS  PubMed  Google Scholar 

  29. Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y, Wei B, Dodonova SO, Nitta KR, Morgunova E, Taipale M, Cramer P, Taipale J (2018) The interaction landscape between transcription factors and the nucleosome. Nature 562:76–81. https://doi.org/10.1038/s41586-018-0549-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid from French ANR grants (Chor_Reg_Net, ANR-05-BLAN-015; Chor-Evo-Net, 0ANR-08-BLAN-0067-01) and an FP6 EU grant (Transcode, LSHG-CT-2004-511990). PL and RV were members or CNRS. KN was supported by the ANR (Chor_Reg_Net), and by CNRS. Thanks to Drs. Jussi Taipale and Arttu Jolma to support NGS sequencing. This work was supported by the French Infrastructure for Integrated Structural Biology (FRISBI, ANR-10-INBS-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lemaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nitta, K.R. et al. (2019). High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities. In: Vincentelli, R. (eds) High-Throughput Protein Production and Purification. Methods in Molecular Biology, vol 2025. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9624-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9624-7_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9623-0

  • Online ISBN: 978-1-4939-9624-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics