Skip to main content

Compound C/Dorsomorphin: Its Use and Misuse as an AMPK Inhibitor

  • Protocol
  • First Online:
Book cover AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

The evolutionary conserved energy sensor AMPK plays crucial roles in many biological processes—both during normal development and pathology. Loss-of-function genetic studies in mice as well as in lower organisms underscore its importance in embryonic development, stress physiology in the adult, and in key metabolic disorders including cardiovascular disease, diabetes, cancer, and metabolic syndrome. In contrast to several other kinases important in human health and medicine where specific/selective inhibitors are available, no AMPK-specific inhibitors are available. The only reagent called dorsomorphin or compound C that is occasionally used as an AMPK inhibitor unfortunately inhibits several other kinases much more potently than AMPK and is therefore highly non-specific. In this chapter, we discuss the pros and cons of using this reagent to study AMPK functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23(12):1112–1119. https://doi.org/10.1002/bies.10009

    Article  CAS  PubMed  Google Scholar 

  2. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785. https://doi.org/10.1038/nrm2249

    Article  CAS  PubMed  Google Scholar 

  3. Thelander M, Olsson T, Ronne H (2004) Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J 23(8):1900–1910. https://doi.org/10.1038/sj.emboj.7600182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spasic MR, Callaerts P, Norga KK (2008) Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neurosci 28(25):6419–6429. https://doi.org/10.1523/JNEUROSCI.1646-08.2008

    Article  CAS  PubMed  Google Scholar 

  5. Tschape JA, Hammerschmied C, Muhlig-Versen M, Athenstaedt K, Daum G, Kretzschmar D (2002) The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J 21(23):6367–6376

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dasgupta B, Ju JS, Sasaki Y, Liu X, Jung SR, Higashida K, Lindquist D, Milbrandt J (2012) The AMPK beta2 subunit is required for energy homeostasis during metabolic stress. Mol Cell Biol 32(14):2837–2848. https://doi.org/10.1128/MCB.05853-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA, Pilegaard H (2005) Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19(9):1146–1148. https://doi.org/10.1096/fj.04-3144fje

    Article  PubMed  Google Scholar 

  8. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S (2003) The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111(1):91–98. https://doi.org/10.1172/JCI16567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–16097. https://doi.org/10.1073/pnas.1105062108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci (Landmark Ed) 14:19–44

    Article  CAS  Google Scholar 

  11. Viollet B, Foretz M (2016) Animal models to study AMPK. EXS 107:441–469. https://doi.org/10.1007/978-3-319-43589-3_18

    CAS  PubMed  Google Scholar 

  12. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120(7):2355–2369. https://doi.org/10.1172/JCI40671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao J, Meng S, Chang E, Beckwith-Fickas K, Xiong L, Cole RN, Radovick S, Wondisford FE, He L (2014) Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem 289(30):20435–20446. https://doi.org/10.1074/jbc.M114.567271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649–1654. https://doi.org/10.1038/nm.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. https://doi.org/10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4(1):33–41. https://doi.org/10.1038/nchembio.2007.54

    Article  CAS  PubMed  Google Scholar 

  17. Hao J, Daleo MA, Murphy CK, Yu PB, Ho JN, Hu J, Peterson RT, Hatzopoulos AK, Hong CC (2008) Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 3(8):e2904. https://doi.org/10.1371/journal.pone.0002904

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 14(12):1363–1369. https://doi.org/10.1038/nm.1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen Q, Little SC, Xu M, Haupt J, Ast C, Katagiri T, Mundlos S, Seemann P, Kaplan FS, Mullins MC, Shore EM (2009) The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization. J Clin Invest 119(11):3462–3472. https://doi.org/10.1172/JCI37412

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, Delai P, Fastnacht-Urban E, Forman SJ, Gillessen-Kaesbach G, Hoover-Fong J, Koster B, Pauli RM, Reardon W, Zaidi SA, Zasloff M, Morhart R, Mundlos S, Groppe J, Shore EM (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30(3):379–390. https://doi.org/10.1002/humu.20868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527. https://doi.org/10.1038/ng1783

    Article  CAS  PubMed  Google Scholar 

  22. Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, Gentry PR, Hopkins CR, Lindsley CW, Hong CC (2010) In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem Biol 5(2):245–253. https://doi.org/10.1021/cb9002865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408(3):297–315. https://doi.org/10.1042/BJ20070797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vogt J, Traynor R, Sapkota GP (2011) The specificities of small molecule inhibitors of the TGFss and BMP pathways. Cell Signal 23(11):1831–1842. https://doi.org/10.1016/j.cellsig.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  25. Jester BW, Cox KJ, Gaj A, Shomin CD, Porter JR, Ghosh I (2010) A coiled-coil enabled split-luciferase three-hybrid system: applied toward profiling inhibitors of protein kinases. J Am Chem Soc 132(33):11727–11735. https://doi.org/10.1021/ja104491h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vucicevic L, Misirkic M, Janjetovic K, Vilimanovich U, Sudar E, Isenovic E, Prica M, Harhaji-Trajkovic L, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V (2011) Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7(1):40–50

    Article  CAS  PubMed  Google Scholar 

  27. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, Kim YM, Park OJ (2007) Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 247(1):115–121. https://doi.org/10.1016/j.canlet.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  28. Pan W, Yang H, Cao C, Song X, Wallin B, Kivlin R, Lu S, Hu G, Di W, Wan Y (2008) AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncol Rep 20(6):1553–1559

    CAS  PubMed  Google Scholar 

  29. Rios M, Foretz M, Viollet B, Prieto A, Fraga M, Costoya JA, Senaris R (2013) AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors. Cancer Res 73(8):2628–2638. https://doi.org/10.1158/0008-5472.CAN-12-0861

    Article  CAS  PubMed  Google Scholar 

  30. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812. https://doi.org/10.1158/0008-5472.CAN-07-2310

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, Kumar A, Zhou X, Sun Y, Quinn B, McPherson C, Warnick RE, Kendler A, Giri S, Poels J, Norga K, Viollet B, Grabowski GA, Dasgupta B (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 111(4):E435–E444. https://doi.org/10.1073/pnas.1311121111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Isakovic A, Harhaji L, Stevanovic D, Markovic Z, Sumarac-Dumanovic M, Starcevic V, Micic D, Trajkovic V (2007) Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci 64(10):1290–1302. https://doi.org/10.1007/s00018-007-7080-4

    Article  CAS  PubMed  Google Scholar 

  33. Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144(4):499–512. https://doi.org/10.1016/j.cell.2011.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Chhipa RR, Nakano I, Dasgupta B (2014) The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther 13(3):596–605. https://doi.org/10.1158/1535-7163.MCT-13-0579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai RY, Zhao XF, Li JJ, Chen R, Luo ZL, Yu LX, Chen SK, Zhang CY, Duan CY, Liu YP, Feng CH, Xia XM, Li H, Fu J, Wang HY (2013) Implication of transcriptional repression in compound C-induced apoptosis in cancer cells. Cell Death Dis 4:e883. https://doi.org/10.1038/cddis.2013.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin J, Mullen TD, Hou Q, Bielawski J, Bielawska A, Zhang X, Obeid LM, Hannun YA, Hsu YT (2009) AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J Lipid Res 50(12):2389–2397. https://doi.org/10.1194/jlr.M900119-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirose Y, Berger MS, Pieper RO (2001) Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res 61(15):5843–5849

    CAS  PubMed  Google Scholar 

  38. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27(1):1–20

    Article  CAS  PubMed  Google Scholar 

  39. Yang WL, Perillo W, Liou D, Marambaud P, Wang P (2012) AMPK inhibitor compound C suppresses cell proliferation by induction of apoptosis and autophagy in human colorectal cancer cells. J Surg Oncol 106(6):680–688. https://doi.org/10.1002/jso.23184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplab Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dasgupta, B., Seibel, W. (2018). Compound C/Dorsomorphin: Its Use and Misuse as an AMPK Inhibitor. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics