Skip to main content

II.D. Hyalocytes: Essential Vitreous Cells in Vitreoretinal Health and Disease

  • Chapter
  • First Online:
Vitreous

Abstract

Vitreoretinal interface diseases are common causes of vision loss or metamorphopsia in spite of recent advances in clinical ophthalmology including vitreoretinal surgery, pharmacological therapy such as anti-VEGF agents, and gene-mediated therapy. The vitreous is often used as a therapeutic place or platform for these therapies; therefore, more detailed knowledge about the environment of the vitreous is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gloor BP. Development of the vitreous body and zonula. Graefes Arch Clin Exp Ophthalmol. 1973;187:21–44.

    Article  CAS  Google Scholar 

  2. Salu P, et al. Light and electron microscopic studies of the rat hyalocyte after perfusion fixation. Ophthalmic Res. 1985;17:125–30.

    Article  PubMed  CAS  Google Scholar 

  3. Uehara M, et al. Morphological studies of the hyalocytes in the chicken eye: scanning electron microscopy and inflammatory response after the intravitreous injection of carbon particles. J Anat. 1996;188:661–9.

    PubMed  PubMed Central  Google Scholar 

  4. Zhu M, et al. The human hyaloid system: cellular phenotypes and inter-relationships. Exp Eye Res. 1999;68:553–63.

    Article  PubMed  CAS  Google Scholar 

  5. Sakamoto T. Cell biology of hyalocytes. Nippon Ganka Gakkai Zasshi. 2003;107:866–82.

    PubMed  CAS  Google Scholar 

  6. Noda Y, et al. Functional properties of hyalocytes under PDGF-rich conditions. Invest Ophthalmol Vis Sci. 2004;45:2107–14.

    Article  PubMed  Google Scholar 

  7. Matsumoto H, et al. Triamcinolone acetonide-assisted pars plana vitrectomy improves residual posterior vitreous hyaloid removal: ultrastructural analysis of the inner limiting membrane. Retina. 2007;27:174–9.

    Article  PubMed  Google Scholar 

  8. Ueno A, et al. Long-term clinical outcomes and therapeutic benefits of triamcinolone-assisted pars plana vitrectomy for proliferative vitreoretinopathy: a case study. Eur J Ophthalmol. 2007;17:392–8.

    PubMed  CAS  Google Scholar 

  9. Gandorfer A, et al. Pathology of the macular hole rim in flat-mounted internal limiting membrane specimens. Retina. 2009;29:1097–105.

    Article  PubMed  Google Scholar 

  10. Hannover A. Muller’s Arch. 1840, cited in: Hamburg A: Some investigations on the cells on the vitreous body. Ophthalmologica. 1959;138:81–107.

    Article  Google Scholar 

  11. Balazs EA. Molecular morphology of the vitreous body. In: Smelser GK, editor. Structure of the eye. New York: Academic; 1961. p. 293–310.

    Google Scholar 

  12. Qiao H, et al. The characterization of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol. 2005;89:513–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Hogan MJ, et al. Histology of the human eye. Philadelphia: WB Sanders; 1971.

    Google Scholar 

  14. Lazarus HS, Hageman GS. In situ characterization of the human hyalocyte. Arch Ophthalmol. 1994;112:1356–62.

    Article  PubMed  CAS  Google Scholar 

  15. Sakamoto T, Ishibashi T. Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina. 2011;31:222–8.

    Article  PubMed  CAS  Google Scholar 

  16. van Meurs JC, et al. Clearance rate of macrophages from the vitreous in rabbits. Curr Eye Res. 1990;9:683–6.

    Article  PubMed  Google Scholar 

  17. Gloor BP. Mitotic activity in the cortical vitreous cells (hyalocytes) after photocoagulation. Invest Ophthalmol. 1969;8:633–46.

    PubMed  CAS  Google Scholar 

  18. Haddad A, Andre JC. Hyalocyte-like cells are more numerous in the posterior chamber than they are in the vitreous of the rabbit eye. Exp Eye Res. 1998;66:709–18.

    Article  PubMed  CAS  Google Scholar 

  19. Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodelling in the developing mouse eye. Cell. 1993;74:453–62.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu M, et al. The human hyaloid system: cell death and vascular regression. Exp Eye Res. 2000;70:767–76.

    Article  PubMed  CAS  Google Scholar 

  21. Osterlin SE, Jacobson B. The synthesis of hyaluronic acid in vitreous. I. Soluble and particulate transferases in hyalocytes. Exp Eye Res. 1968;7:497–510.

    Article  PubMed  CAS  Google Scholar 

  22. Rittig M, et al. Hyaluronan synthase immunoreactivity in the anterior segment of the primate eye. Graefes Arch Clin Exp Ophthalmol. 1993;231:313–7.

    Article  PubMed  CAS  Google Scholar 

  23. Nishitsuka K, et al. Hyaluronan production regulation from porcine hyalocyte cell line by cytokines. Exp Eye Res. 2007;85:539–45.

    Article  PubMed  CAS  Google Scholar 

  24. Grabner G, et al. Macrophage-like properties of human hyalocytes. Invest Ophthalmol Vis Sci. 1980;19:333–40.

    PubMed  CAS  Google Scholar 

  25. Stein-Streilein J. Immune regulation and the eye. Trends Immunol. 2008;29:548–54.

    Article  PubMed  CAS  Google Scholar 

  26. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3:878–89.

    Article  Google Scholar 

  27. Streilein JW, et al. Blood-borne signals that induce anterior chamber-associated immune deviation after intracameral injection of antigen. Invest Ophthalmol Vis Sci. 1997;38:2245–54.

    PubMed  CAS  Google Scholar 

  28. Sonoda KH, et al. The analysis of systemic tolerance elicited by antigen inoculation into the vitreous cavity: vitreous cavity-associated immune deviation. Immunology. 2005;116:390–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hirayama K, et al. The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes. Invest Ophthalmol Vis Sci. 2004;45:3896–903.

    Article  PubMed  Google Scholar 

  30. Kita T, et al. Functional characteristics of connective tissue growth factor on vitreoretinal cells. Diabetes. 2007;56:1421–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kita T, et al. Transforming growth factor-β2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes. 2007;56:231–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sommer F, et al. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-beta1. Graefes Arch Clin Exp Ophthalmol. 2008;246:1275–84.

    Article  PubMed  CAS  Google Scholar 

  33. Hata Y, et al. Vascular endothelial growth factor expression by hyalocytes and its regulation by glucocorticoid. Br J Ophthalmol. 2008;92:1540–4.

    Article  PubMed  CAS  Google Scholar 

  34. Kita T, et al. Role of TGF-βin proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A. 2008;105:17504–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Wiedemann P, Kohlmann H. Perioperative analysis of vitreous cell components by immunoimpression cytology. Graefes Arch Clin Exp Ophthalmol. 1996;123:463–6.

    Article  Google Scholar 

  36. Gandorfer A, et al. Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction. Am J Ophthalmol. 2005;139:638–52.

    Article  PubMed  Google Scholar 

  37. Kampik A, et al. Epiretinal and vitreous membranes: comparative study of 56 cases. Arch Ophthalmol. 1981;99:1445–54.

    Article  PubMed  CAS  Google Scholar 

  38. Faulborn J, et al. Diabetic vitreopathy: findings using the celloidin embedding technique. Ophthalmologica. 1998;212:369–76.

    Article  PubMed  CAS  Google Scholar 

  39. Kishi S, et al. Structure of the inner retinal surface in simple diabetic retinopathy. Jpn J Ophthalmol. 1982;26:141–9.

    PubMed  CAS  Google Scholar 

  40. Hisatomi T, et al. A new method for comprehensive bird’s-eye analysis of the surgically excised internal limiting membrane. Am J Ophthalmol. 2005;139:1121–2.

    Article  PubMed  Google Scholar 

  41. Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.

    Article  PubMed  CAS  Google Scholar 

  42. Sebag J. Vitreous anatomy, aging, and anomalous posterior vitreous detachment. In: Dartt DA, Besharse JC, Dana R, editors. Encyclopedia of the eye, vol. 4. Oxford: Elsevier; 2010. p. 307–15.

    Chapter  Google Scholar 

  43. Kishi S, Shimizu K. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1994;118:451–6.

    Article  PubMed  CAS  Google Scholar 

  44. Sebag J. Vitreoschisis. Graefes Arch Clin Exp Ophthalmol. 2008;246:329–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Gupta P, et al. Vitreoschisis in macular diseases. Br J Ophthalmol. 2011;95:376–80.

    Article  PubMed  Google Scholar 

  46. Kohno RI, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol. 2009;93:1020–6.

    Article  PubMed  Google Scholar 

  47. Messmer EM, et al. Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol. 1998;236:248–54.

    Article  PubMed  CAS  Google Scholar 

  48. Sebag J, et al. Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc. 2007;105:121–9.

    PubMed  PubMed Central  Google Scholar 

  49. Wang MY, Nguyen D, Hindoyan N, Sadun AA, Sebag J. Vitreo-papillary adhesion in macular hole and macular pucker. Retina. 2009;29:644–50.

    Article  PubMed  Google Scholar 

  50. Enaida H, et al. Possible benefits of triamcinolone-assisted pars plana vitrectomy for retinal diseases. Retina. 2003;23:764–70.

    Article  PubMed  Google Scholar 

  51. Sakamoto T, Ishibashi T. Visualizing vitreous in vitrectomy by triamcinolone. Graefes Arch Clin Exp Ophthalmol. 2009;247:1153–63.

    Article  PubMed  CAS  Google Scholar 

  52. Shimada H, et al. Double staining with brilliant blue G and double peeling for epiretinal membranes. Ophthalmology. 2009;116:1370–6.

    Article  PubMed  Google Scholar 

  53. Hata Y, et al. Role of tumour necrosis factor-α (TNFα) in the functional properties of hyalocytes. Br J Ophthalmol. 2011;95:261–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Ishibashi MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kita, T., Sakamoto, T., Ishibashi, T. (2014). II.D. Hyalocytes: Essential Vitreous Cells in Vitreoretinal Health and Disease. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics