Skip to main content

Diversity and Functional Properties of Bistable Photopigments

  • Chapter
  • First Online:
Evolution of Visual and Non-visual Pigments

Part of the book series: Springer Series in Vision Research ((SSVR,volume 4))

Abstract

Rhodopsin and rhodopsin-like photopigments function in visual and non-visual photoreceptor cells of various animals. Since the 1950s, photopigments having bistable nature have been found in invertebrate visual photoreceptor cells. The bistable photopigments are characterized by high thermal stability of the active photoproduct as well as photo-interconvertibility between inactive (dark) and active (light) forms. Recent studies have revealed that bistable photopigments are present in the non-visual photoreceptor cells of vertebrates including mammals. This observation means that an understanding of the molecular properties of bistable pigments is critical to the understanding of photoreception not only in invertebrates but also in vertebrates. In this chapter, the molecular characteristics, diversity and structure–function relationships of bistable photopigments are summarized. Recent research progress and future directions of bistable pigment study are also overviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cAMP:

Cyclic adenosine monophosphate

GPCR:

G protein-coupled receptor

ipRGC:

Intrinsically photosensitive retinal ganglion cell

meta-II:

Metarhodopsin II

References

  • Ahuja S, Smith SO. Multiple switches in G protein-coupled receptor activation. Trends Pharmacol Sci. 2009;30(9):494–502.

    PubMed  CAS  Google Scholar 

  • Ahuja S, Hornak V, Yan EC, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol. 2009;16(2):168–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ashida A, Matsumoto K, Ebrey TG, Tsuda M. A purified agonist-activated G-protein coupled receptor: truncated octopus Acid Metarhodopsin. Zoolog Sci. 2004;21(3):245–50.

    PubMed  CAS  Google Scholar 

  • Bailes HJ, Zhuang LY, Lucas RJ. Reproducible and sustained regulation of Galphas signalling using a metazoan opsin as an optogenetic tool. PLoS One. 2012;7(1):e30774.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428.

    CAS  Google Scholar 

  • Bartl FJ, Ritter E, Hofmann KP. Signaling states of rhodopsin: absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state. J Biol Chem. 2001;276(32): 30161–6.

    PubMed  CAS  Google Scholar 

  • Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. 2006;4(8):e254.

    PubMed  PubMed Central  Google Scholar 

  • Bernstein JG, Garrity PA, Boyden ES. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol. 2012;22(1):61–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3.

    PubMed  CAS  Google Scholar 

  • Blackshaw S, Snyder SH. Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci. 1997;17(21):8083–92.

    PubMed  CAS  Google Scholar 

  • Blackshaw S, Snyder SH. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci. 1999;19(10):3681–90.

    PubMed  CAS  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8.

    PubMed  CAS  Google Scholar 

  • Buchen L. It’s all about the structure. Nature. 2011;476:387–90.

    PubMed  CAS  Google Scholar 

  • Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP. Crystal structure of metarhodopsin II. Nature. 2011;471(7340):651–5.

    PubMed  CAS  Google Scholar 

  • Davies WI, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, Foster RG, Whitmore D, Hankins MW. Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci. 2011;68(24):4115–32.

    PubMed  CAS  Google Scholar 

  • Emeis D, Kuhn H, Reichert J, Hofmann KP. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 1982;143(1):29–34.

    PubMed  CAS  Google Scholar 

  • Farrens DL. What site-directed labeling studies tell us about the mechanism of rhodopsin activation and G-protein binding. Photochem Photobiol Sci. 2010;9(11):1466–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996;274(5288):768–70.

    PubMed  CAS  Google Scholar 

  • Findlay JB, Pappin DJ. The opsin family of proteins. Biochem J. 1986;238(3):625–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fu Y, Zhong H, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci U S A. 2005;102(29):10339–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gomez Mdel P, Angueyra JM, Nasi E. Light-transduction in melanopsin-expressing photoreceptors of Amphioxus. Proc Natl Acad Sci U S A. 2009;106(22):9081–6.

    PubMed  Google Scholar 

  • Hara T, Hara R. Rhodopsin and retinochrome in the squid retina. Nature. 1967;214(5088):573–5.

    PubMed  CAS  Google Scholar 

  • Hara T, Hara R, Takeuchi J. Rhodopsin and retinochrome in the octopus retina. Nature. 1967;214(5088):572–3.

    PubMed  CAS  Google Scholar 

  • Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, Rao JK, Argos P. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–44.

    PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hegemann P, Nagel G. From channelrhodopsins to optogenetics. EMBO Mol Med. 2013;5: 173–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hillman P, Hochstein S, Minke B. Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev. 1983;63(2):668–772.

    PubMed  CAS  Google Scholar 

  • Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP. A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci. 2009;34(11):540–52.

    PubMed  CAS  Google Scholar 

  • Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL. Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol. 2012;88(1): 119–28.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbard R, St George RC. The rhodopsin system of the squid. J Gen Physiol. 1958;41(3): 501–28.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM, Khorana HG. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem. 2003;63:243–90.

    PubMed  CAS  Google Scholar 

  • Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods. 2014;11:325–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Isoldi MC, Rollag MD, Castrucci AM, Provencio I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A. 2005;102(4):1217–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jager F, Fahmy K, Sakmar TP, Siebert F. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Biochemistry. 1994;33(36):10878–82.

    PubMed  CAS  Google Scholar 

  • Jager S, Palczewski K, Hofmann KP. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry. 1996;35(9):2901–8.

    PubMed  CAS  Google Scholar 

  • Karunarathne WK, Giri L, Kalyanaraman V, Gautam N. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl Acad Sci U S A. 2013;110(17):E1565–74.

    PubMed  PubMed Central  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. 2012;33(1):17–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kiser PD, Golczak M, Maeda A, Palczewski K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta. 2012;1821(1):137–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Knox BE, Salcedo E, Mathiesz K, Schaefer J, Chou WH, Chadwell LV, Smith WC, Britt SG, Barlow RB. Heterologous expression of limulus rhodopsin. J Biol Chem. 2003;278(42):40493–502.

    PubMed  CAS  Google Scholar 

  • Kojima D, Terakita A, Ishikawa T, Tsukahara Y, Maeda A, Shichida Y. A novel Go-mediated phototransduction cascade in scallop visual cells. J Biol Chem. 1997;272(37):22979–82.

    PubMed  CAS  Google Scholar 

  • Kojima D, Mano H, Fukada Y. Vertebrate ancient-long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J Neurosci. 2000;20(8):2845–51.

    PubMed  CAS  Google Scholar 

  • Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One. 2011;6(10):e26388.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koyanagi M, Terakita A. Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol. 2008;84(4):1024–30.

    PubMed  CAS  Google Scholar 

  • Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta. 2014;1837:710–6.

    PubMed  CAS  Google Scholar 

  • Koyanagi M, Terakita A, Kubokawa K, Shichida Y. Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett. 2002;531(3):525–8.

    PubMed  CAS  Google Scholar 

  • Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A. Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci U S A. 2004;101(17):6687–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol. 2005;15(11):1065–9.

    PubMed  CAS  Google Scholar 

  • Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci U S A. 2008;105(40):15576–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koyanagi M, Takada E, Nagata T, Tsukamoto H, Terakita A. Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci U S A. 2013;110(13):4998–5003.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Strnad H, Kawamura S, Piatigorsky J, Paces V, Vlcek C. Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A. 2008;105(26):8989–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kropf A, Brown PK, Hubbard R. Lumi- and meta-rhodopsins of squid and octopus. Nature. 1959;183(4659):446–8.

    PubMed  CAS  Google Scholar 

  • Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG. Agonist-bound adenosine A(2A) receptor structures reveal common features of GPCR activation. Nature. 2011;474(7352):521–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Edwards PC, Burghammer M, Villa C, Schertler GF. Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol. 2004;343(5):1409–38.

    PubMed  CAS  Google Scholar 

  • Matsuyama T, Yamashita T, Imamoto Y, Shichida Y. Photochemical properties of mammalian melanopsin. Biochemistry. 2012;51(27):5454–62.

    PubMed  CAS  Google Scholar 

  • Mawad K, Van Gelder RN. Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro. J Biol Rhythms. 2008;23(5):387–91.

    PubMed  Google Scholar 

  • Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW. Addition of human melanopsin renders mammalian cells photoresponsive. Nature. 2005;433(7027):741–5.

    PubMed  CAS  Google Scholar 

  • Montell C. Drosophila visual transduction. Trends Neurosci. 2012;35(6):356–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moutsaki P, Whitmore D, Bellingham J, Sakamoto K, David-Gray ZK, Foster RG. Teleost multiple tissue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Brain Res Mol Brain Res. 2003;112(1–2):135–45.

    PubMed  CAS  Google Scholar 

  • Murakami M, Kouyama T. Crystal structure of squid rhodopsin. Nature. 2008;453(7193):363–7.

    PubMed  CAS  Google Scholar 

  • Mure LS, Rieux C, Hattar S, Cooper HM. Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms. 2007;22(5):411–24.

    PubMed  PubMed Central  Google Scholar 

  • Nagata T, Koyanagi M, Tsukamoto H, Terakita A. Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(1):51–9.

    PubMed  CAS  Google Scholar 

  • Nagata T, Koyanagi M, Tsukamoto H, Saeki S, Isono K, Shichida Y, Tokunaga F, Kinoshita M, Arikawa K, Terakita A. Depth perception from image defocus in a jumping spider. Science. 2012;335(6067):469–71.

    PubMed  CAS  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100(24):13940–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamura A, Kojima D, Imai H, Terakita A, Okano T, Shichida Y, Fukada Y. Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry. 1999;38(45):14738–45.

    PubMed  CAS  Google Scholar 

  • Nakane Y, Ikegami K, Ono H, Yamamoto N, Yoshida S, Hirunagi K, Ebihara S, Kubo Y, Yoshimura T. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci U S A. 2010;107(34):15264–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nathans J. The genes for color vision. Sci Am. 1989;260(2):42–9.

    PubMed  CAS  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK. The dynamic process of beta(2)-adrenergic receptor activation. Cell. 2013;152(3):532–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Ă… crystal structure. J Mol Biol. 2004;342(2):571–83.

    Google Scholar 

  • Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994;372(6501):94–7.

    PubMed  CAS  Google Scholar 

  • Ostrovsky MA, Weetall HH. Octopus rhodopsin photoreversibility of a crude extract from whole retina over several weeks’ duration. Biosens Bioelectron. 1998;13(1):61–5.

    CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289(5480):739–45.

    PubMed  CAS  Google Scholar 

  • Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T. Illumination of the melanopsin signaling pathway. Science. 2005;307(5709):600–4.

    PubMed  CAS  Google Scholar 

  • Peirson S, Foster RG. Melanopsin: another way of signaling light. Neuron. 2006;49(3):331–9.

    PubMed  CAS  Google Scholar 

  • Pitt GA, Collins FD, Morton RA, Stok P. Studies on rhodopsin. VIII. Retinylidenemethylamine, an indicator yellow analogue. Biochem J. 1955;59(1):122–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95(1):340–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–5.

    PubMed  CAS  Google Scholar 

  • Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433(7027):745–9.

    PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature. 2011a;469(7329):175–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rasmussen SG, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK. Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature. 2011b;477(7366):549–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature. 2011;469(7329):236–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989;86(21):8309–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato K, Yamashita T, Ohuchi H, Shichida Y. Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. Biochemistry. 2011;50(48):10484–90.

    PubMed  CAS  Google Scholar 

  • Schertler GF. Signal transduction: the rhodopsin story continued. Nature. 2008;453(7193):292–3.

    PubMed  CAS  Google Scholar 

  • Sexton T, Buhr E, Van Gelder RN. Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem. 2012;287(3):1649–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature. 1996;383(6598): 347–50.

    PubMed  CAS  Google Scholar 

  • Shen D, Jiang M, Hao W, Tao L, Salazar M, Fong HK. A human opsin-related gene that encodes a retinaldehyde-binding protein. Biochemistry. 1994;33(44):13117–25.

    PubMed  CAS  Google Scholar 

  • Soni BG, Philp AR, Foster RG, Knox BE. Novel retinal photoreceptors. Nature. 1998;394(6688): 27–8.

    PubMed  CAS  Google Scholar 

  • Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD, Schertler GF. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature. 2011;471(7340): 656–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stavenga DG, Schwemer J. Visual pigments of invertebrates. In: Ali MA, editor. Photoreception and vision in invertebrates. New York: Plenum Press; 1984. p. 11–61.

    Google Scholar 

  • Steyaert J, Kobilka BK. Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol. 2011;21(4):567–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suga H, Schmid V, Gehring WJ. Evolution and functional diversity of jellyfish opsins. Curr Biol. 2008;18(1):51–5.

    PubMed  CAS  Google Scholar 

  • Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 1997;94(18):9893–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett. 2003;554(3):410–6.

    PubMed  CAS  Google Scholar 

  • Terakita A. The opsins. Genome Biol. 2005;6(3):213.

    PubMed  PubMed Central  Google Scholar 

  • Terakita A. Diversity and evolution of animal rhodopsins and phototransduction cascade. In: Collignon LN, Normand CB, editors. Photobiology: principles, applications and effects. New York: Nova; 2010. p. 179–93.

    Google Scholar 

  • Terakita A, Yamashita T, Shichida Y. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc Natl Acad Sci U S A. 2000;97(26):14263–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Terakita A, Yamashita T, Nimbari N, Kojima D, Shichida Y. Functional interaction between bovine rhodopsin and G protein transducin. J Biol Chem. 2002;277(1):40–6.

    PubMed  CAS  Google Scholar 

  • Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y. Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol. 2004;11(3): 284–9.

    PubMed  CAS  Google Scholar 

  • Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem. 2008;105(3):883–90.

    PubMed  CAS  Google Scholar 

  • Torii M, Kojima D, Okano T, Nakamura A, Terakita A, Shichida Y, Wada A, Fukada Y. Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett. 2007;581(27):5327–31.

    PubMed  CAS  Google Scholar 

  • Tsukamoto H, Terakita A. Diversity and functional properties of bistable pigments. Photochem Photobiol Sci. 2010;9(11):1435–43.

    PubMed  CAS  Google Scholar 

  • Tsukamoto H, Terakita A, Shichida Y. A rhodopsin exhibiting binding ability to agonist all-trans-retinal. Proc Natl Acad Sci U S A. 2005;102(18):6303–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsukamoto H, Farrens DL, Koyanagi M, Terakita A. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. J Biol Chem. 2009;284(31):20676–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vought BW, Salcedo E, Chadwell LV, Britt SG, Birge RR, Knox BE. Characterization of the primary photointermediates of Drosophila rhodopsin. Biochemistry. 2000;39(46):14128–37.

    PubMed  CAS  Google Scholar 

  • Wald G. The molecular basis of visual excitation. Nature. 1968;219(156):800–7.

    PubMed  CAS  Google Scholar 

  • Walker MT, Brown RL, Cronin TW, Robinson PR. Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci U S A. 2008;105(26):8861–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature. 2011;469(7329):241–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A. 2010;107(51):22084–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yao X, Parnot C, Deupi X, Ratnala VR, Swaminath G, Farrens D, Kobilka B. Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol. 2006;2(8):417–22.

    PubMed  CAS  Google Scholar 

  • Yau KW, Hardie RC. Phototransduction motifs and variations. Cell. 2009;139(2):246–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ye H, Daoud-El Baba M, Peng RW, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011;332(6037):1565–8.

    PubMed  CAS  Google Scholar 

  • Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res. 2000;19(4):385–419.

    PubMed  CAS  Google Scholar 

  • Zemelman BV, Lee GA, Ng M, Miesenbock G. Selective photostimulation of genetically chARGed neurons. Neuron. 2002;33(1):15–22.

    PubMed  CAS  Google Scholar 

  • Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci. 2007;8(8):577–81.

    PubMed  CAS  Google Scholar 

  • Zhukovsky EA, Oprian DD. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989;246(4932):928–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Tsukamoto Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsukamoto, H. (2014). Diversity and Functional Properties of Bistable Photopigments. In: Hunt, D., Hankins, M., Collin, S., Marshall, N. (eds) Evolution of Visual and Non-visual Pigments. Springer Series in Vision Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4355-1_7

Download citation

Publish with us

Policies and ethics