Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 18, 2015

Consideration of hydrogen transport in press-hardened 22MnB5

Untersuchungen zum Wasserstofftransport im formgehärteten Stahl 22MnB5
  • Matthias Kuhlmann , Olaf Schwedler , Niels Holtschke and Sven Jüttner
From the journal Materials Testing

Abstract

The increasing use of hot stamped high strength steels like 22MnB5 (1.5528) for complex crash relevant structural components in the vehicle body, and the problem of hydrogen-assisted damage have gained increasing importance in the automotive industry. In the high strength category, hot stamped quenched and tempered steels (tensile strength up to 1600 MPa) are under unfavorable conditions for potential risk of hydrogen embrittlement, e. g., at elevated hydrogen input, in the presence of increased tensions, and in the further processing of these steels. Peculiarities of boron-alloyed quenched and tempered steel are coating systems that are applied to the steel substrate prior to hot stamping and they serve as a protection against scaling during austenitization. These coating systems, aluminum-silicon (+AS150) and zinc (+Z140) which are most commonly used, have significant influence on the diffusion and desorption of diffusible hydrogen in thin 22MnB5 sheets. The investigations of the hydrogen transport described in this paper are carried out by thermal desorption analysis (TDA). This measurement method allows the determination of activation energies and pre-exponential diffusion coefficients of hydrogen for the different coating variants of 22MnB5 by different temperature regimes (heating rates). Furthermore, the corresponding diffusion coefficients of the studied states are determined. Based on these results, an estimate of desorption is carried out, and then empirically tested by isothermal analyzes.

Kurzfassung

Durch den zunehmenden Einsatz höchstfester formgehärteter Vergütungsstähle wie dem 1.5528/22MnB5 für komplexe crashrelevante Strukturbauteile in der Fahrzeugkarosserie hat die Problematik der wasserstoffunterstützten Schädigung auch in der Automobilindustrie vermehrt an Bedeutung gewonnen. In den hohen Festigkeitsbereichen formgehärteter Vergütungsstähle (Rm bis zu 1600 MPa) besteht unter ungünstigen Bedingungen, z. B. bei erhöhtem Wasserstoffeintrag und bei dem Vorliegen erhöhter Zugspannungen, etwa bei der weiteren Verarbeitung dieser Stähle potentiell das Risiko einer Wasserstoffversprödung. Eine Besonderheit des verwendeten borlegierten Vergütungsstahls bilden Schichtsysteme, die vor dem Formhärten auf das Stahlsubstrat aufgetragen werden. Sie dienen als Verzunderungsschutz während der Austenitisierung. Diese Schichtsysteme, den häufigsten Einsatz finden Aluminium-Silizium (+AS150) und Zink (+Z140), haben maßgeblichen Einfluss auf das Diffusions- und Desorptionsverhalten von diffusionsfähigem Wasserstoff in 22MnB5-Feinblechen. Die in der Arbeit beschriebenen Untersuchungen zum Wasserstofftransport erfolgen unter Zuhilfenahme der thermischen Desorptionsanalyse. Diese Messmethodik erlaubt durch verschiedene Temperaturregime (Aufheizgeschwindigkeiten) die Bestimmung von Aktivierungsenergien und präexponentiellen Diffusionskoeffizienten von Wasserstoff für die unterschiedlichen Beschichtungsvarianten des 22MnB5. Im Folgenden werden die zugehörigen Diffusionskoeffizienten der untersuchten Zustände bestimmt. Aufbauend auf diesen Ergebnissen wird eine Abschätzung der Desorption vorgenommen und anschließend empirisch durch isotherme Analysen überprüft.


§Correspondence Address, Olaf Schwedler, Institute of Materials and joining Technology (IWF), Chair Joining Technology, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany. E-mail:

MSc Matthias Kuhlmann, born in 1988, is a research assistant at the Institute of Materials and Joining Technology, Faculty of Mechanical Engineering, Otto-von-Guericke University Magdeburg, Germany. His areas of expertise include hydrogen in metals, hydrogen assisted cracking and press hardening.

Dipl.-Ing. Olaf Schwedler, born in 1972, is a research assistant at the Institute of Materials and Joining Technology, Faculty of Mechanical Engineering, Otto-von-Guericke University Magdeburg, Germany and an International Welding Engineer (IWE). His areas of expertise include hydrogen in metals, hydrogen assisted cold cracking, welding and metal joining as well as press hardening.

MSc Niels Holtschke, born in 1986, is a research assistant at the Institute of Materials and Joining Technology, Faculty of Mechanical Engineering, Otto-von-Guericke University Magdeburg, Germany. His areas of expertise include resistance spot welding, hydrogen in metals and press hardening.

Prof. Dr.-Ing. Sven Jüttner, born in 1966, is Professor and Head of the Institute of Materials and Joining Technology, Faculty of Mechanical Engineering, Otto-von-Guericke University Magdeburg, Germany. After receiving his diploma from the University of Braunschweig, Germany, he worked as a PhD student at the research center of Volkswagen Group and received his PhD in Engineering (Dr.-Ing.) in 1999. Since 2005, he has been leading several subdivisions at the Volkswagen Group and was promoted to full Professor of Joining Technology at University of Magdeburg in 2011.


References

1 F.-J.Lenze, S.Sikora, J.Banik: Warmumformung – Innovatives Fertigungsverfahren für den Fahrzeugleichtbau mit Stahl, ThyssenKrupp Techforum (2009), No. 1, pp. 1521Search in Google Scholar

2 H.So, H.Hoffmann, R.Golle: Schneidstrategien zum wirtschaftlichen Zerteilen pressgehärteter Stahlbleche, M. Merklein: 3. Erlanger Workshop Warmblechumformung, Meisenbach, Bamberg (2008), pp. 14968Search in Google Scholar

3 M.Merklein, J.Lechler: Investigation of the thermomechanical properties of hot stamping steels, Journal of Materials Processing Technology177 (2006), 1-3, pp. 45255Search in Google Scholar

4 T.Tröster, W.Rostek: Innovative Warmumformung, European Research Association for Sheet Metal Working: Neuere Entwicklungen in der Blechumformung, Hannover (2004), Germany, pp. 5165Search in Google Scholar

5 H.Karbasian, A. E.Tekkaya: A review on hot stamping, Journal of Materials Processing Technology210 (2010), pp. 2103211810.1016/j.jmatprotec.2010.07.019Search in Google Scholar

6 C.Hoff: Untersuchung der Prozesseinflussgrößen beim Presshärten des höchstfesten Vergütungsstahls 22MnB5, Dissertation (2007), LFT ErlangenSearch in Google Scholar

7 V.Merklinger, B.Wielage, T.Lampke: Entwicklung einer niedrigschmelzenden Legierung und deren Applikation zum Korrosionsschutz hochfester Stähle, Materialwissenschaft und Werkstofftechnik39 (2008), No. 12, pp. 88891Search in Google Scholar

8 L.Gräbener, H.Hofele: Aktuelle Trends in der Umformtechnik, European Research Association for Sheet Metal Working: Hochfeste und hybride Materialien, Schnelle Umform- und Fügeverfahren, Hannover (2011), pp. 1333Search in Google Scholar

9 T.Altan: Hot-stamping boron-alloyed steels for automotive parts, Part I: Process methods and uses, Stamping Journal (2006), No. 12, pp. 4041Search in Google Scholar

10 D. W.Fan, B. C.Cooman: State-of-the-knowledge on coating systems for hot-stamped parts, Steel Research International83 (2012), No. 5, pp. 41233Search in Google Scholar

11 M.Köyer, J.Horstmann, S.Sikora: Oberflächenveredelungen für die Warmumformung – Serienprodukte und Neuentwicklungen, M. Merklein: 5. Erlanger Workshop Warm-blechumformung, Meisenbach, Bamberg (2010), pp. 1528Search in Google Scholar

12 C.Georges, T.Machedo, P.Drillet: Measurements and modelling of hydrogen desorption at room temperature in Al-Si-coated boron steel, L. Duprez: Steely Hydrogen Conference Proceedings, Genth (2011), pp. 7788.Search in Google Scholar

13 C.Georges, T.Sturel, P.Drillet: Absorption/desorption of diffusible hydrogen in aluminized boron steel, ISIJ International53 (2013), No. 8, pp. 1295304Search in Google Scholar

14 M. A. V.Devanathan, Z.Stachurski: The adsorption and diffusion of electrolytic hydrogen in palladium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences270 (1962), No. 1340, pp. 90102Search in Google Scholar

15 T.Heumann, H.Mehrer: Diffusion in Metallen; Grundlagen, Theorie, Vorgänge in Reinmetallen und Legierungen, Springer Verlag, Berlin Heidelberg, Germany (1992)10.1007/978-3-642-86413-1_6Search in Google Scholar

16 W. Y.Choo, J. Y.Lee: Thermal analysis of trapped hydrogen in pure iron, Metallurgical and Materials Transactions A13 (1982), No. 1, pp. 13540Search in Google Scholar

17 S.Weczera, M.Rhode, C.Sunderkötter: Laboratory Experiments on Press Hardened Steels in Different Delivered States Exposed to Hydrogen;K.Steinhoff, M.Oldenburg, B.Prakash: Hot Sheet Metal Forming of High Performance Steel, Wissenschaftliche Scripten, Auerbach (2015), pp. 4553Search in Google Scholar

18 H.-H.Braess, U.Seiffert: Vieweg-Handbuch Kraftfahrzeugtechnik, 7th Ed., Springer Vieweg, Wiesbaden, Germany (2013)10.1007/978-3-658-01691-3Search in Google Scholar

Published Online: 2015-11-18
Published in Print: 2015-11-16

© 2015, Carl Hanser Verlag, München

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.110808/html
Scroll to top button