Skip to main content
Log in

An Evaluation Of Local Similarity At The Top Of The Mixed Layer Based On Large-Eddy Simulations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Local similarity, referred to as type II similarity,in the interfacial, stably-stratified layer at thetop of the atmospheric (or oceanic) mixed layer isdiscussed. Type II scales for scalars are based onthe local values of scalar gradients. Similaritypredictions are derived from the second-orderclosure model of Yamada and Mellor, and also fromsimilarity arguments. The obtainedformulation is verified for active and passive scalarsbased on the large-eddy simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beets, C. andKoren, B.: 1996, Large-Eddy Simulation with Accurate Implicit Subgrid-Scale Diffusion, Rept. NM-R9601, Centrum voor Wiskunde en Informatica, The Netherlands, 25 pp.

    Google Scholar 

  • Brost, R. A. andWyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Businger, J. A.: 1973, ‘Turbulent Transfer in the Atmospheric Surface Layer’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, pp. 67–100.

  • Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 27, 1211–1213.

    Google Scholar 

  • Guillement, B.,Isaka, H., andMascard, P.: 1983, ‘Molecular Dissipation of Turbulent Fluctuations in the Convective Mixed Layer. Part 1: Height Variations of Dissipation Rates’, Boundary-Layer Meteorol. 27, 141–162.

    Google Scholar 

  • Hunt, J. C. R.,Kaimal, J. C., andGaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in the Stable Layers’, Quart. J. Roy. Meteorol. Soc. 92, 793–815.

    Google Scholar 

  • Hunt, J. C. R.,Strech, D. D., andBritter, R. E.: 1988, in J. S. Puttok (ed.), Length Scales in Stably Stratified Turbulent Flows and their Use in Turbulent Models. Stably Stratified Flows and Dense Gas Dispersion, Clarendon Press, pp. 285–321.

  • Kosovich, B.: 1997, ‘Subgrid-Scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers’, J. Fluid Mech. 336, 151–182.

    Google Scholar 

  • Mellor, G. L. andYamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Moeng, C.-H. andWyngaard, J. C.: 1989, ‘Statistics of Scalars in the Convective Boundary Layer’, J. Atmos. Sci. 41, 3161–3169.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216.

    Google Scholar 

  • Otte, M. J. andWyngaard, J. C.: 2000, ‘Stably Stratified Interfacial-Layer Turbulence’, in 14th Symposium on Boundary Layer and Turbulence, American Meteorological Society, Aspen, CO, pp. 74–75.

    Google Scholar 

  • Pearson, H. J.,Puttock, J. S., andHunt, J. C.: 1983, ‘A Statistical Model of Fluid-Element Motions and Vertical Diffusion in Homogeneous Stratified Turbulent Flow’, J. Fluid Mech. 129, 219–249.

    Google Scholar 

  • Rohr, J. J.: 1985, An Experimental Study of Evolving Turbulence in Uniform Mean Shear Flows and Without Stable Stratification, Ph.D. Dissertation, University of San Diego, 271 pp. (available from Dept. of Appl. Mech. and Eng. Sci., University of California, San Diego, La Jolla, CA 92093).

  • Schumann, U.: 1991, ‘Subgrid Length-Scales for Large-Eddy Simulation of Stratified Turbulence’, Theoret. Comput. Fluid Dyn. 2, 279–290.

    Google Scholar 

  • Schumann, U. andGerz, T.: 1995, ‘Turbulent Mixing in Stably Stratified Flows’, J. Appl. Meteorol. 34, 33–48.

    Google Scholar 

  • Smeets, C. J. P. P.,Duynkerke, P. G., andVugts, H. F.: 2000, ‘Turbulence Characteristics of the Stable Boundary Layer over a Mid-Latitude Glacier. Part II: Pure Katabatic Forcing Conditions’, Boundary-Layer Meteorol. 97, 73–107.

    Google Scholar 

  • Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary layer, Prentice-Hall, 300 pp.

  • Sorbjan, Z.: 1990, ‘Similarity Scales and Universal Profiles of Statistical Moments in the Convective Boundary Layer’, J. Appl. Meteorol. 29, 762–775.

    Google Scholar 

  • Sorbjan, Z.: 1995, ‘Self-Similar Structure of the Planetary Boundary Layer’, in C.-H. Moeng (ed.), The Planetary Boundary Layer and its Parameterization, 1995 Summer Colloquium, NCAR, Boulder, CO, 525 pp.

    Google Scholar 

  • Sorbjan, Z.: 1996a, ‘Numerical Study of Penetrative and “Solid Lid” Nonpenetrative Convective Boundary Layers, J. Atmos. Sci. 53, 101–112.

    Google Scholar 

  • Sorbjan, Z.: 1996b, ‘Effects Caused by Varying the Strength of the Capping Inversion Based on a Large-Eddy Simulation Model of the Shear-Free Convective Boundary Layer, J. Atmos. Sci. 53, 2015–2024.

    Google Scholar 

  • Sorbjan, Z.: 1999, ‘Similarity of Scalar Fields in the Convective Boundary Layer, J. Atmos. Sci. 56, 2212–2221.

    Google Scholar 

  • Sullivan, P.,McWilliams, J. C., andMoeng, C.-H.: 1996, ‘A Grid Nesting Method for Large-Eddy Simulation of Planetary Boundary-Layer Flows’, Boundary-Layer Meteorol. 55, 3042–3064.

    Google Scholar 

  • Sullivan, P.,Moeng, C.-H.,Stevens, B.,Lenschow, D. H., andMayor, S. D.: 1998, J. Atmos. Sci. 55, 3042–3064.

    Google Scholar 

  • Tavoularis, S. andCorrsin, S.: 1985, ‘Effects of Shear on the Turbulent Diffusivity Tensor’, Int. J. Heat Mass Transfer 28, 256–276.

    Google Scholar 

  • Tavoularis, S. andKarnik, U.: 1989, ‘Further Experiments on the Evolution of Turbulent Stresses and Scales in Uniformly Sheared Turbulence’, J. Fluid Mech. 204, 457–4787.

    Google Scholar 

  • Yamada: 1975, ‘The Critical Richardson Number and the Ratio of the Eddy Transport Coefficients Obtained from a Turbulence Closure Model’, J. Atmos. Sci. 32, 926–933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorbjan, Z. An Evaluation Of Local Similarity At The Top Of The Mixed Layer Based On Large-Eddy Simulations. Boundary-Layer Meteorology 101, 183–207 (2001). https://doi.org/10.1023/A:1019260632125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019260632125

Navigation