Skip to main content
Log in

Chemical passivation of the under coordinated Pb2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hybrid organic–inorganic perovskite solar cells (PSCs) are promising new generations of solar cells, which is low in cost with high power conversion efficiency (PCE). However, PSCs suffer from structural defects generated from the under coordinated ions at the surface, which limits their photovoltaic performances. Herein we report, two β-diketone Lewis base additives 2,4-pentanedione and 3-methyl-2,4-nonanedione within the chlorobenzene anti-solvent to passivate the surface defects generated from the under coordinated Pb2+ ions in CH3NH3PbI3 perovskite films. The incorporation of the two β-diketone passivators could successfully enhance the open-circuit voltage of the PSCs by 52 mV and 17 mV for 3-methyl-2,4-nonanedione and 2,4-pentanedione, respectively, with improved PCE by 45% for 3-methyl-2,4-nonanedione compared to the pristine PSC. This enhancement in the photovoltaic performance of the PSCs can be attributed to passivation of the defects through the interaction between two carbonyl groups of the β-diketone Lewis base additives and the under coordinated Pb2+ defects in the perovskite film, which improved the PSCs PCE and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data used in this article are presented in the article and its electronic supplementary materials.

References

  1. Kayesh, M. E., Matsuishi, K., Chowdhury, T. H., Kaneko, R., Lee, J.-J., Noda, T., et al. (2018). Influence of anti-solvents on CH3NH3PbI3 films surface morphology for fabricating efficient and stable inverted planar perovskite solar cells. Thin Solid Films, 663, 105–115.

    Article  Google Scholar 

  2. Liu, S., Guan, Y., Sheng, Y., Hu, Y., Rong, Y., Mei, A., et al. (2020). A review on additives for halide perovskite solar cells. Advanced Energy Materials, 10(13), 1902492.

    Article  CAS  Google Scholar 

  3. Abdel-Shakour, M., Chowdhury, T. H., Matsuishi, K., Bedja, I., Moritomo, Y., Islam, A., et al. (2020). High efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Solar rrl, 5(1), 2000606.

    Article  Google Scholar 

  4. Yuan, Y., & Huang, J. (2016). Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 49(2), 286–293.

    Article  CAS  Google Scholar 

  5. Azpiroz, J. M., Mosconi, E., Bisquert, J., De Angelis, F. J. E., & Science, E. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7), 2118–2127.

    Article  CAS  Google Scholar 

  6. Son, D.-Y., Lee, J.-W., Choi, Y. J., Jang, I.-H., Lee, S., Yoo, P. J., et al. (2016). Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy, 1(7), 1–8.

    Article  Google Scholar 

  7. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J., et al. (2014). Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 5(1), 1–7.

    Google Scholar 

  8. Lin, Y., Shen, L., Dai, J., Deng, Y., Wu, Y., Bai, Y., et al. (2017). π-Conjugated Lewis Base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Advanced Materials, 29(7), 1604545.

    Article  Google Scholar 

  9. Chen, B., Rudd, P. N., Yang, S., Yuan, Y., Huang, J., et al. (2019). Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 48(14), 3842–3867.

    Article  CAS  Google Scholar 

  10. Zhang, H., Wu, Y., Shen, C., Li, E., Yan, C., Zhang, W., et al. (2019). Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Advanced Energy Materials, 9(13), 1803573.

    Article  Google Scholar 

  11. Tavakoli, M. M., Bi, D., Pan, L., Hagfeldt, A., Zakeeruddin, S. M., Grätzel, M., et al. (2018). Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Advanced Energy Materials, 8(19), 1800275.

    Article  Google Scholar 

  12. Ono, L. K., Qi, Y., et al. (2016). Surface and interface aspects of organometal halide perovskite materials and solar cells. The Journal of Physical Chemistry Letters, 7(22), 4764–4794.

    Article  CAS  Google Scholar 

  13. She, L., Liu, M., Zhong, D., et al. (2016). Atomic structures of CH3NH3PbI3 (001) surfaces. ACS Nano, 10(1), 1126–1131.

    Article  CAS  Google Scholar 

  14. Noel, N. K., Abate, A., Stranks, S. D., Parrott, E. S., Burlakov, V. M., Goriely, A., et al. (2014). Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano, 8(10), 9815–9821.

    Article  CAS  Google Scholar 

  15. Zeng, Q., Zhang, X., Feng, X., Lu, S., Chen, Z., Yong, X., et al. (2018). Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 30(9), 1705393.

    Article  Google Scholar 

  16. Wang, F., Geng, W., Zhou, Y., Fang, H. H., Tong, C. J., Loi, M. A., et al. (2016). Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Advanced Materials, 28(45), 9986–9992.

    Article  CAS  Google Scholar 

  17. Li, X., Chen, C. C., Cai, M., Hua, X., Xie, F., Liu, X., et al. (2018). Efficient passivation of hybrid perovskite solar cells using organic dyes with -COOH functional group. Advanced Energy Materials, 8(20), 1800715.

    Article  Google Scholar 

  18. Cramer, R. E., Chudyk, M. A., et al. (1972). Studies of an acetylacetone complex of zinc perchlorate. Inorganic Chemistry, 12(5), 1193–1195.

    Article  Google Scholar 

  19. Aromí, G., Gamez, P., & Reedijk, J. (2008). Poly beta-diketones: prime ligands to generate supramolecular metalloclusters. Coordination Chemistry Reviews, 252(8–9), 964–989.

    Article  Google Scholar 

  20. Garra, P., Morlet-Savary, F., Graff, B., Dumur, F., Monnier, V., Dietlin, C., et al. (2018). Metal Acetylacetonate-Bidentate Ligand Interaction (MABLI) as highly efficient free radical generating systems for polymer synthesis. Polymer Chemistry, 9(12), 1371–1378.

    Article  CAS  Google Scholar 

  21. Xie, L., Hwang, H., Kim, M., Kim, K., et al. (2017). Ternary solvent for CH3NH3PbI3 perovskite films with uniform domain size. Physical Chemistry Chemical Physics, 19(2), 1143–1150.

    Article  CAS  Google Scholar 

  22. Radicchi, E., Mosconi, E., Elisei, F., Nunzi, F., De Angelis, F., et al. (2019). Understanding the solution chemistry of lead halide perovskites precursors. ACS Applied Energy Materials, 2(5), 3400–3409.

    Article  CAS  Google Scholar 

  23. Niu, T., Lu, J., Munir, R., Li, J., Barrit, D., Zhang, X., et al. (2018). Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 30(16), 1706576.

    Article  Google Scholar 

  24. Huang, Z., Hu, X., Liu, C., Tan, L., Chen, Y., et al. (2017). Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance. Advanced Functional Materials, 27(41), 1703061.

    Article  Google Scholar 

  25. Gfroerer, T., & theory, & instrumentation. (2006). Photoluminescence in analysis of surfaces and interfaces. Chichester: John Wiley & Sons Ltd.

    Book  Google Scholar 

  26. Chaudhary, B., Kulkarni, A., Jena, A. K., Ikegami, M., Udagawa, Y., Kunugita, H., et al. (2017). Poly (4-Vinylpyridine)-Based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. Chemsuschem, 10(11), 2473–2479.

    Article  CAS  Google Scholar 

  27. Kayesh, M. E., Chowdhury, T. H., Matsuishi, K., Kaneko, R., Kazaoui, S., Lee, J.-J., et al. (2018). Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Letters, 3(7), 1584–1589.

    Article  CAS  Google Scholar 

  28. Gharibzadeh, S., Nejand, B. A., Moshaii, A., Mohammadian, N., Alizadeh, A. H., Mohammadpour, R., et al. (2016). Two-step physical deposition of a compact CuI Hole- Transport layer and the formation of an interfacial species in perovskite solar cells. Chemsuschem, 9(15), 1929–1937.

    Article  CAS  Google Scholar 

  29. Liang, P. W., Liao, C. Y., Chueh, C. C., Zuo, F., Williams, S. T., Xin, X. K., et al. (2014). Additive enhanced crystallization of solution- processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials, 26(22), 3748–3754.

    Article  CAS  Google Scholar 

  30. Thakur, U., Kwon, U., Hasan, M. M., Yin, W., Kim, D., Ha, N. Y., et al. (2016). Investigation into the advantages of pure perovskite film without PbI2 for high performance solar cell. Scientific Reports, 6, 35994.

    Article  Google Scholar 

  31. Wu, T., Wang, Y., Li, X., Wu, Y., Meng, X., Cui, D., et al. (2019). Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π- acceptor molecules. Advanced Energy Materials, 9(17), 1803766.

    Article  Google Scholar 

  32. Li, H., Li, Y., Li, Y., Shi, J., Zhang, H., Xu, X., et al. (2017). Synergistic effect of caprolactam as lewis base and interface engineering for efficient and stable planar perovskite solar cells. Nano Energy, 42, 222–231.

    Article  CAS  Google Scholar 

  33. Zhuang, X., Zhang, Y., Zhang, J., Chen, Y., Zhu, Y., et al. (2018). The roles of acetylacetone additives in enhancing perovskite solar cell performance. Materials Research Express, 6(2), 025512.

    Article  Google Scholar 

  34. Kamarudin, M. A., Hirotani, D., Wang, Z., Hamada, K., Nishimura, K., Shen, Q., et al. (2019). Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment. The Journal of Physical Chemistry Letters, 10(17), 5277–5283.

    Article  CAS  Google Scholar 

  35. Hou, X., Huang, S., Ou-Yang, W., Pan, L., Sun, Z., Chen, X., et al. (2017). Constructing efficient and stable perovskite solar cells via interconnecting perovskite grains. ACS Applied Materials & Interfaces, 9(40), 35200–35208.

    Article  CAS  Google Scholar 

  36. Pazos-Outón, L. M., Xiao, T. P., Yablonovitch, E., et al. (2018). Fundamental efficiency limit of lead iodide perovskite solar cells. The Journal of Physical Chemistry Letters, 9(7), 1703–1711.

    Article  Google Scholar 

  37. Sherkar, T., Momblona, C. L., Gil-Escrig, J., Ávila, M. S., Bolink, H. J., Koster, L. J. A., et al. (2017). Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Letters, 2, 1214.

    Article  CAS  Google Scholar 

  38. Habisreutinger, S. N., Noel, N. K., Snaith, H., et al. (2018). Hysteresis index: A figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Letters, 3(10), 2472–2476.

    Article  CAS  Google Scholar 

  39. Wei, D., Ma, F., Wang, R., Dou, S., Cui, P., Huang, H., et al. (2018). Ion-Migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells. Advanced Materials, 30(31), 1707583.

    Article  Google Scholar 

  40. Chen, J., Ko, S., Liu, L., Sheng, Y., Han, H., Li, X., et al. (2015). The effect of different alkyl chains on the photovoltaic performance of D–π–A porphyrin-sensitized solar cells. New Journal of Chemistry, 39(5), 3736–3746.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.I. acknowledges the support from JSPS KAKENHI Grant no. 18H02079. M. A-S thanks the Egyptian Ministry of Higher Education & Scientific Research for the financial support through the Egypt-Japan Education Partnership (EJEP)-3rd call.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraful Islam.

Ethics declarations

Conflict of interests

The authors declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Shakour, M., Chowdhury, T.H., Matsuishi, K. et al. Chemical passivation of the under coordinated Pb2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives. Photochem Photobiol Sci 20, 357–367 (2021). https://doi.org/10.1007/s43630-021-00023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00023-z

Keywords

Navigation