Skip to main content
Log in

A simple predictive model for spherical indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple model is described with which the entire force versus penetration behavior of indentation with a sphere, during loading and unloading, may be simulated from knowledge of the four test material parameters, Young’s modulus, Poisson’s ratio, flow stress at the onset of full plastic flow and strain hardening index, and the elastic properties of the indenter. The underlying mechanisms are discussed and the predictions of the model are compared with data produced by an ultra low load, penetration measuring instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. J. Bell A. Bendeli J. S. Field M. V. Swain and E. G. Thwaite Metrologia 28, 463 (1991/1992).

  2. R. Hill E.H. Lee and S.J. Tupper Proc. R. Soc. A 188, 273 (1947).

    Google Scholar 

  3. L. E. Samuels in Microindentation in Metals, Microindentation Techniques in Materials Science and Engineering, edited by P. J. Blau and B.R. Lawn (ASTM Special Technical Publication, 1985), p. 889.

    Google Scholar 

  4. M. C. Shaw and G.J. DeSalvo Trans. Am. Soc. Mech. Eng., Series B 92, 480 (1970).

    Google Scholar 

  5. T. O. Mulhearn J. Mech. and Phys. of Solids 7, 85 (1959).

    Article  Google Scholar 

  6. H. A. Francis Trans, of the ASME, July 272 (1976).

  7. P. S. Follansbee and G. B. Sinclair Int. J. Solids and Structures 20, 172 (1981).

    Google Scholar 

  8. K. L. Johnson Contact Mechanics (Cambridge University Press, 1985).

    Book  Google Scholar 

  9. I. N. Sneddon Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  10. D. Tabor Hardness of Solids (Oxford University Press, 1951).

    Google Scholar 

  11. L. E. Goodman and L. M. Keer Int. J. Solids and Structures I 407, 117 (1965).

    Google Scholar 

  12. A. E. H. Love A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Cambridge University Press).

  13. M. J. Puttock and E.G. Thwaite Elastic Compression of Spheres and Cylinders at Point and Line Contact, National Standards Laboratory Technical Paper No. 25 (Commonwealth Scientific and Industrial Research Organization, Australia, 1969).

    Google Scholar 

  14. A.I. Nadai Theory of Flow and Fracture of Solids (McGraw-Hill, New York, 1963), Vol. 2, p. 221.

    Google Scholar 

  15. E. Meyer Z. Ver Deutch Ing. 52, 645 (1908).

    CAS  Google Scholar 

  16. M.V. Sinnott The Solid State for Engineers (John Wiley and Sons Inc., New York, 1961).

    Google Scholar 

  17. The Properties of Diamond, edited by J. E. Field (Academic Press, London, 1979).

    Google Scholar 

  18. A. G. Guy and J. J. Hren Elements of Physical Metallurgy, 3rd ed. (Addison-Wesley Pub. Co., Reading, MA, 1974), p. 138.

  19. B.W. Mott Microhardness Indentation Hardness Testing (Butterworths, London, 1956).

    Google Scholar 

  20. W. R. LaFontaine B. Yost and Che-Yu Li, J. Mater. Res. 5, 776 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J.S., Swain, M.V. A simple predictive model for spherical indentation. Journal of Materials Research 8, 297–306 (1993). https://doi.org/10.1557/JMR.1993.0297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0297

Navigation