Skip to main content
Log in

Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Activated graphene (AG) with various specific surface areas, pore volumes, and average pore sizes is fabricated and applied as a matrix for sulfur. The impacts of the AG pore structure parameters and sulfur loadings on the electrochemical performance of lithium-sulfur batteries are systematically investigated. The results show that specific capacity, cycling performance, and Coulombic efficiency of the batteries are closely linked to the pore structure and sulfur loading. An AG3/S composite electrode with a high sulfur loading of 72 wt.% exhibited an excellent long-term cycling stability (50% capacity retention over 1,000 cycles) and extra-low capacity fade rate (0.05% per cycle). In addition, when LiNO3 was used as an electrolyte additive, the AG3/S electrode exhibited a similar capacity retention and high Coulombic efficiency (∼98%) over 1,000 cycles. The excellent electrochemical performance of the series of AG3/S electrodes is attributed to the mixed micro/mesoporous structure, high surface area, and good electrical conductivity of the AG matrices and the well-distributed sulfur within the micro/mesopores, which is beneficial for electrical and ionic transfer during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  3. Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium–ion battery. Nature 2015, 520, 324–328.

    Article  Google Scholar 

  4. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  5. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  Google Scholar 

  6. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  7. Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

    Article  Google Scholar 

  8. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  9. Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metalorganic framework-based separator for lithium–sulfur batteries. Nat. Energy 2016, 1, 16094.

    Article  Google Scholar 

  10. Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 2015, 6, 8850.

    Article  Google Scholar 

  11. Yuan, S. Y.; Bao, J. L.; Wang, L. N.; Xia, Y. Y.; Truhlar, D. G.; Wang, Y. G. Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium–sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv. Energy Mater. 2016, 6, 1501733.

    Article  Google Scholar 

  12. Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3992–3996.

    Article  Google Scholar 

  13. Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

    Google Scholar 

  14. Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 2014, 26, 625–631.

    Article  Google Scholar 

  15. Wang, L. N.; Wang, Y. G.; Xia, Y. Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci. 2015, 8, 1551–1558.

    Article  Google Scholar 

  16. Ding, Y. L.; Kopold, P.; Hahn, K.; Van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112–1119.

    Article  Google Scholar 

  17. Zu, C. X.; Azimi, N.; Zhang, Z. C.; Manthiram, A. Insight into lithium-metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. J. Mater. Chem. A 2015, 3, 14864–14870.

    Article  Google Scholar 

  18. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  Google Scholar 

  19. Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 2016, 9, 3735–3746.

    Article  Google Scholar 

  20. Li, N. W.; Zheng, M. B.; Lu, H. L.; Hu, Z. B.; Shen, C. F.; Chang, X. F.; Ji, G. B.; Cao, J. M.; Shi, Y. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. 2012, 48, 4106–4108.

    Article  Google Scholar 

  21. Zhang, S. T.; Li, N. W.; Lu, H. L.; Zheng, J. F.; Zang, R.; Cao, J. M. Improving lithium–sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Adv. 2015, 5, 50983–50988.

    Article  Google Scholar 

  22. Ma, Z. L.; Li, Z.; Hu, K.; Liu, D. D.; Huo, J.; Wang, S. Y. The enhancement of polysulfide absorbsion in Li–S batteries by hierarchically porous CoS2/carbon paper interlayer. J. Power Sources 2016, 325, 71–78.

    Article  Google Scholar 

  23. Ma, Z. L.; Huang, X. B.; Jiang, Q. Q.; Huo, J.; Wang, S. Y. Enhanced cycling stability of lithium–sulfur batteries by electrostatic-interaction. Electrochim. Acta 2015, 182, 884–890.

    Article  Google Scholar 

  24. Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.

    Article  Google Scholar 

  25. Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Res. 2016, 9, 240–248.

    Article  Google Scholar 

  26. Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéliphase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    Article  Google Scholar 

  27. Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.

    Article  Google Scholar 

  28. Huang, Y.; Zheng, M. B.; Lin, Z. X.; Zhao, B.; Zhang, S. T.; Yang, J. Z.; Zhu, C. L.; Zhang, H.; Sun, D. P.; Shi, Y. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 10910–10918.

    Article  Google Scholar 

  29. Li, X.; Li, X. F.; Banis, M. N.; Wang, B. Q.; Lushington, A.; Cui, X. Y.; Li, R. Y.; Sham, T. K.; Sun, X. L. Tailoring interactions of carbon and sulfur in Li–S battery cathodes: Significant effects of carbon-heteroatom bonds. J. Mater. Chem. A 2014, 2, 12866–12872.

    Article  Google Scholar 

  30. Li, X. L.; Cao, Y. L.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J. Mater. Chem. 2011, 21, 16603–16610.

    Article  Google Scholar 

  31. Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1301761.

    Article  Google Scholar 

  32. Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 9592–9595.

    Article  Google Scholar 

  33. Zeng, L. C.; Pan, F. S.; Li, W. H.; Jiang, Y.; Zhong, X. W.; Yu, Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale, 2014, 6, 9579–9587.

    Article  Google Scholar 

  34. Chen, S. Q.; Huang, X. D.; Sun, B.; Zhang, J. Q.; Liu, H.; Wang, G. X. Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. J. Mater. Chem. A 2014, 2, 16199–16207.

    Article  Google Scholar 

  35. Xu, F.; Tang, Z. W.; Huang, S. Q.; Chen, L. Y.; Liang, Y. R.; Mai, W. C.; Zhong, H.; Fu, R. W.; Wu, D. C. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 7, 7221.

    Article  Google Scholar 

  36. Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Res. 2015, 8, 2663–2675.

    Article  Google Scholar 

  37. Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2013, 1, 1096–1101.

    Article  Google Scholar 

  38. Wu, C.; Fu, L. J.; Maier, J.; Yu, Y. Free-standing graphenebased porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries. J. Mater. Chem. A 2015, 3, 9438–9445.

    Article  Google Scholar 

  39. Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571–1579.

    Article  Google Scholar 

  40. Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268–280.

    Article  Google Scholar 

  41. Zhang, S. T.; Zheng, M. B.; Lin, Z. X.; Li, N. W.; Liu, Y. J.; Zhao, B.; Pang, H.; Cao, J. M.; He, P.; Shi, Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 15889–15896.

    Article  Google Scholar 

  42. Lee, J. T.; Zhao, Y. Y.; Kim, H.; II Cho, W.; Yushin, G. Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: The combined effects of pore size distribution and electrolyte molarity. J. Power Sources 2014, 248, 752–761.

    Article  Google Scholar 

  43. Yao, Y.; Wu, F. Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy 2015, 17, 91–103.

    Article  Google Scholar 

  44. Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.

    Article  Google Scholar 

  45. Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium–sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.

    Article  Google Scholar 

  46. Liang, C. D.; Dudney, N. J.; Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for highenergy lithium battery. Chem. Mater. 2009, 21, 4724–4730.

    Article  Google Scholar 

  47. Ye, H.; Yin, Y. X.; Xin, S.; Guo, Y. G. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. J. Mater. Chem. A 2013, 1, 6602–6608.

    Article  Google Scholar 

  48. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  49. You, Y.; Zeng, W. C.; Yin, Y. X.; Zhang, J.; Yang, C. P.; Zhu, Y. W.; Guo, Y. G. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J. Mater. Chem. A 2015, 3, 4799–4802.

    Article  Google Scholar 

  50. Chen, X. A.; Xiao, Z. B.; Ning, X. T.; Liu, Z.; Yang, Z.; Zou, C.; Wang, S.; Chen, X. H.; Chen, Y.; Huang, S. M. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1301988.

    Article  Google Scholar 

  51. Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183.

    Article  Google Scholar 

  52. Zhang, S. T.; Zheng, M. B.; Lin, Z. X.; Zang, R.; Huang, Q. L.; Xue, H. G.; Cao, J. M.; Pang, H. Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Adv. 2016, 6, 39918–39925.

    Article  Google Scholar 

  53. Karthikeyan, K.; Amaresh, S.; Lee, S. N.; Sun, X. L.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. Construction of highenergy- density supercapacitors from pine-cone-derived high-surface-area carbons. ChemSusChem 2014, 7, 1435–1442.

    Article  Google Scholar 

  54. Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano 2014, 8, 5208–5215.

    Article  Google Scholar 

  55. Thieme, S.; Brückner, J.; Meier, A.; Bauer, I.; Gruber, K.; Kaspar, J.; Helmer, A.; Althues, H.; Schmuck, M.; Kaskel, S. A lithium–sulfur full cell with ultralong cycle life: Influence of cathode structure and polysulfide additive. J. Mater. Chem. A 2015, 3, 3808–3820.

    Article  Google Scholar 

  56. Rong, J. P.; Ge, M. Y.; Fang, X.; Zhou, C. W. Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium–sulfur (Li–S) batteries. Nano Lett. 2014, 14, 473–479.

    Article  Google Scholar 

  57. Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348.

    Article  Google Scholar 

  58. Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 2012, 159, A920–A923.

    Article  Google Scholar 

  59. Xu, R.; Belharouak, I.; Li, J. C. M.; Zhang, X. F.; Bloom, I.; Bareño, J. Role of polysulfides in self-healing lithium–sulfur batteries. Adv. Energy Mater. 2013, 3, 833–838.

    Article  Google Scholar 

  60. Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  61. He, G.; Ji, X. L.; Nazar, L. High “C” rate Li–S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.

    Article  Google Scholar 

  62. Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and templatefree Pechini method for advanced lithium–sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.

    Article  Google Scholar 

  63. Deng, Z. F.; Zhang, Z. A.; Lai, Y. Q.; Liu, J.; Li, J.; Liu, Y. X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading. J. Electrochem. Soc. 2013, 160, A553–A558.

    Article  Google Scholar 

  64. Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42–51.

    Article  Google Scholar 

  65. Murali, S.; Potts, J. R.; Stoller, S.; Park, J.; Stoller, M. D.; Zhang, L. L.; Zhu, Y. W.; Ruoff, R. S. Preparation of activated graphene and effect of activation parameters on electrochemical capacitance. Carbon 2012, 50, 3482–3485.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51202106, 21671170, and 21201010), the New Century Excellent Talents of the University in China (No. NCET-13-0645), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 164200510018), the Plan for Scientific Innovation Talent of Henan Province, the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (Nos. 14IRTSTHN004 and 16IRTSTHN003), the Science & Technology Foundation of Henan Province (Nos. 122102210253 and 13A150019), the Science & Technology Foundation of Jiangsu Province (No. BK20150438), the Six Talent Plan (No. 2015-XCL-030), and the China Postdoctoral Science Foundation (No. 2012M521115). We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions and the technical support we received at the Testing Center of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Pang or Yan Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Zhang, S., Chen, S. et al. Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Res. 10, 4305–4317 (2017). https://doi.org/10.1007/s12274-017-1659-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1659-3

Keywords

Navigation