Skip to main content
Log in

Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Three well-tuned procedures were used for thermal improvement of epoxy resin (E). Accordingly, graphene xerogel (GX) was used as nanofiller in the matrix of E. Additionally, (3-isocyanatopropyl)triethoxysilane-modified E (IE) or tetraethyl orthosilicate (TEOS) oligomer-modified E (TE) was incorporated into a hybrid structure of graphene-containing silica/siloxane network. For this purpose, a bifunctional silane coupling agent of 1,1′-(hexane-1,6-diyl)bis(3-(3-(trimethoxysilyl)propyl)urea) (HDBTMSPU) was synthesized. GX was obtained by incorporation of HDBTMSPU-modified graphene oxide (FGO) into xerogel structure using HDBTMSPU and TEOS. Modified resins, FGO, HDBTMSPU, and TEOS were also used in preparation of hybrid products. Thermal stability and char residue of the composites were compared. GO modification was approved by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman, X-ray diffraction, and thermogravimetric analysis results. Hybrid composite of IE, FGO, and silica/siloxane network shows higher thermal properties. Char residue is increased by 16.93 % by loading of only 1 wt% of FGO in this hybrid product.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  2. Samadaie F, Salami-Kalajahi M, Roghani-Mamaqani H (2016) Grafting of poly(acrylic acid) onto poly(amidoamine)-functionalized graphene oxide via surface-mediated reversible addition–fragmentation chain transfer polymerization. Int J Polym Mater Polym Biomater 65:302–309

    Article  Google Scholar 

  3. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Adv 4:24439–24452

    Article  Google Scholar 

  4. Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomasf S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  5. Meeks AC (1974) Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins. Polymer 15:675–681

    Article  Google Scholar 

  6. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 53(12):1901–1929

    Article  Google Scholar 

  7. Levchik SV, Piotrowski A, Weil ED, Yao Q (2005) New developments in flame retardancy of epoxy resins. Polym Degrad Stab 88:57–62

    Article  Google Scholar 

  8. Wang JS, Liu Y, Zhao HB, Liu J, Wang DY, Song YP, Wang YZ (2009) Metal compound enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym Degrad Stab 94(4):625–631

    Article  Google Scholar 

  9. Dogana M, Unlu SM (2014) Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym Degrad Stab 99:12–17

    Article  Google Scholar 

  10. Perrin FX, Chaoui N, Margaillan A (2009) Effects of octa (3-chloroammoniumpropyl)octasilsesquioxane on the epoxy self-polymerisation and epoxy–amine curing. Thermochim Acta 491:97–102

    Article  Google Scholar 

  11. Chiang CL, Chang RC, Chiu YC (2007) Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochim Acta 453:97–104

    Article  Google Scholar 

  12. Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803

    Article  Google Scholar 

  13. Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71:539–543

    Article  Google Scholar 

  14. Hrubesh LW (1990) Aerogels: the world’s lightest solids. Chem Ind 24:824–827

    Google Scholar 

  15. Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari SA, Khezri K (2013) “Grafting through” approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition–fragmentation chain transfer polymerization. J Sol–Gel Sci Technol 66:337–344

    Article  Google Scholar 

  16. Siouffi AM (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000:801–818

    Article  Google Scholar 

  17. Kajihara K (2013) Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J Asian Ceram Soc 1:121–133

    Article  Google Scholar 

  18. Sobani M, Haddadi-Asl V, Mirshafiei-Langari SA, Salami-Kalajahi M, Roghani-Mamaqani H, Khezri K (2014) A kinetics study on the in situ reversible addition–fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Des Monomers Polym 17:245–254

    Article  Google Scholar 

  19. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polym Compos 34:1648–1654

    Article  Google Scholar 

  20. Fazli Y, Alijani H, Khezri K (2016) Styrene and methyl methacrylate random copolymerization via AGET ATRP: incorporation of hydrophobic silica aerogel nanoparticles. Adv Polym Technol. doi:10.1002/adv.21549

    Google Scholar 

  21. Wen FJ, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1681

    Article  Google Scholar 

  22. Wu SY, Yuen SM, Ma CCM, Chiang CL, Huang YL, Wu H, Teng CC, Yang CC, Wei MH (2010) Preparation, morphology, and properties of silane-modified MWCNT/epoxy composites. J Appl Polym Sci 115:3481–3488

    Article  Google Scholar 

  23. Wu SY, Yuen SM, Ma CCM, Huang YL, Teng CC (2011) Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane-modified multi-walled carbon nanotube/epoxy composites. Micro Nano Lett 6(6):463–467

    Article  Google Scholar 

  24. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Organic-inorganic nanohybrids of novolac phenolic resin and carbon nanotube: high carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Microporous Mesoporous Mater 224:58–67

    Article  Google Scholar 

  25. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: high carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stab 124:1–14

    Article  Google Scholar 

  26. Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784

    Article  Google Scholar 

  27. Wu HL, Yang YT, Ma CCM, Kuan HC (2005) Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites. J Polym Sci A Polym Chem 43:6084–6094

    Article  Google Scholar 

  28. QianX Song L, Hu Y, Yuen RKK (2013) Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane. Thermochim Acta 552:87–97

    Article  Google Scholar 

  29. Qian X, Song L, Yu B, Wang B, Yuan B, Shi Y, Hu Y, Yuen RKK (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1:6822–6830

    Article  Google Scholar 

  30. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Edge-functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int 63:1912–1923

    Article  Google Scholar 

  31. Hu S, Xu Y, Jiang D, Wu D, Sun Y, Deng F (2009) Moisture-resistant protective films for UV-light filter based on diisocyanate-bridged polysilsesquioxanes. Thin Solid Films 518:348–354

    Article  Google Scholar 

  32. Roghani-Mamaqani H, Haddadi-Asl V (2014) In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: grafting from hydroxyl groups. Polym Compos 35:386–395

    Article  Google Scholar 

  33. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638

    Article  Google Scholar 

  34. Wan YJ, Tang LC, Gong LX, Yan D, Li YB, Wu LB, Jiang JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    Article  Google Scholar 

  35. Chiang CL, Ma CCM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. Eur Polym J 38:2219–2224

    Article  Google Scholar 

  36. Alyamac E, Gua H, Soucek MD, Qiub S, Buchheit RG (2012) Alkoxysilane oligomer modified epoxide primers. Prog Org Coat 74:67–81

    Article  Google Scholar 

  37. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–344

    Article  Google Scholar 

  38. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4:31428–31442

    Article  Google Scholar 

  39. Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Composites B 60:341–349

    Article  Google Scholar 

  40. George GA, Clarke PC, Jhon NS, Friend G (1991) Real time monitoring of the cure reaction of a TGDDM/DDS epoxy resin using fiber optic FT-IR. J Appl Polym Sci 2:643–657

    Article  Google Scholar 

  41. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696

    Article  Google Scholar 

  42. Hemmatpour H, Haddadi-Asl V, Roghani-Mamaqani H (2015) Synthesis of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer 65:143–153

    Article  Google Scholar 

  43. Jafarzadeh S, Haddadi-Asl V, Roghani-Mamaqani H (2015) Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. J Polym Res 22:123–132

    Article  Google Scholar 

  44. Li KY, Kuan CF, Kuan HC, Chen CH, Shen MY, Yang JM, Chiang CL (2014) Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater Chem Phys 146:354–362

    Article  Google Scholar 

  45. Roghani-Mamaqani H, Khezri K (2016) A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci 360:373–382

    Article  Google Scholar 

  46. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M, Sobani M, Mirshafiei-Langari SA (2015) Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iran Polym J 24:51–62

    Article  Google Scholar 

  47. Roghani-Mamaqani H (2015) Surface-initiated ATRP of styrene from epoxy groups of graphene nanolayers: twofold polystyrene chains and various graft densities. RSC Adv 5:53357–53368

    Article  Google Scholar 

  48. Deng Y, Li YJ, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590

    Article  Google Scholar 

  49. Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M (2015) Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid Polym Sci 293:735–750

    Article  Google Scholar 

  50. Mallakpour S, Abdolmaleki A, Borande S (2014) Covalently functionalized graphene with biocompatible natural amino acid. Appl Surf Sci 307:533–542

    Article  Google Scholar 

  51. Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992

    Article  Google Scholar 

  52. Sun S, Cao Y, Feng J, Wu P (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20:5605–5607

    Article  Google Scholar 

  53. Tuinstra F, Koenig LJ (1970) Raman spectrum of graphite. Chem Phys 53:1126–1130

    Google Scholar 

  54. Roghani-Mamaqani H, Haddadi-Asl V, Mortezaei M, Khezri K (2014) Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. J Appl Polym Sci 131:40273

    Article  Google Scholar 

  55. Villar-Rodil S, Paredes JI, Martınez-Alonso A, Tascon JMD (2009) Preparation of graphene dispersions and graphene-polymer composites in organic media. J Mater Chem 19:3591–3593

    Article  Google Scholar 

  56. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105

    Article  Google Scholar 

  57. Qi X, Zhai G, Liang J, Ma S, Liu X, Xu B (2014) Preparation and characterization of SiC@CNT coaxial nanocables using CNTs as a template. Cryst Eng Commun 16:9697–9703

    Article  Google Scholar 

  58. Samadaie F, Salami-Kalajahi M, Roghani-Mamaqani H, Banaie M (2015) A structural study on ethylenediamine- and poly(amidoamine)-functionalized graphene oxide: simultaneous reduction, functionalization, and formation of 3D structure. RSC Adv 5:71835–71843

    Article  Google Scholar 

  59. Lin J, Zhang P, Zheng C, Wua X, Maoa T, Zhu M, Wanga H, Feng D, Qiana S, Cai X (2014) Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl Surf Sci 316:114–123

    Article  Google Scholar 

  60. Li X, Chen Y, Mo S, Jia L, Shao X (2014) Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta 595:6–10

    Article  Google Scholar 

  61. Kariminejad B, Salami-Kalajahi M, Roghani-Mamaqani H (2015) Thermophysical behaviour of matrix-grafted graphene/poly(ethylene tetrasulphide) nanocomposites. RSC Adv 5:100369–100377

    Article  Google Scholar 

  62. Roghani-Mamaqani H (2016) Grafting polystyrene with various graft densities through epoxy groups of graphene nanolayers via atom transfer radical polymerization. Polym Compos. doi:10.1002/pc.23832

    Google Scholar 

  63. Jiang T, Kuila T, Kim NH, Ku BC, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125

    Article  Google Scholar 

  64. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298

    Article  Google Scholar 

  65. Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz M (2014) Reverse atom transfer radical polymerization of methyl methacrylate in the presence of azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci 292:2971–2981

    Article  Google Scholar 

  66. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M (2015) Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: heterogeneities in chains and graft densities. Polym Eng Sci 55:1720–1732

    Article  Google Scholar 

  67. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties. J Polym Res 20:163–174

    Article  Google Scholar 

  68. Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893

    Article  Google Scholar 

  69. Dong L, Yang Q, Xu C, Li Y, Yang D, Hou F, Yin H, Kang F (2015) Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 90:164–171

    Article  Google Scholar 

  70. Li WC, Lu AH, Schmidt W, Schüth F (2005) High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11:1658–1664

    Article  Google Scholar 

  71. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Particle technology series. Volume 16: characterization of porous solids and powders: surface area, pore size and density. Springer, New York, p 121

    Book  Google Scholar 

  72. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

Download references

Acknowledgments

National Elites Foundation is greatly appreciated for its financial support (Grant Number: 15/76508).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Roghani-Mamaqani or Mehdi Salami-Kalajahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi-Shoa, S., Roghani-Mamaqani, H. & Salami-Kalajahi, M. Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin. J Sol-Gel Sci Technol 80, 362–377 (2016). https://doi.org/10.1007/s10971-016-4128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4128-7

Keywords

Navigation