Skip to main content
Log in

High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An easy process for the synthesis of polyaniline/graphite nanosheets (PANI/NanoG) composites was developed. NanoG were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Scanning electron microscopy (SEM), X-ray diffraction techniques (XRD), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structures of NanoG and PANI/NanoG conducting composites. Electrical conductivity measurements indicated that the percolation threshold of PANI/NanoG composites at room temperature was as low as 0.32 vol.% and the conductivity of PANI/NanoG composites was 420 S/cm. The percolation theory, mean-field theory, and excluded volume theory were applied to interpret the conducting properties. Results showed that the low value of percolation threshold may be mainly attributed to nanoscale structure of NanoG forming conducting bridge in PANI matrix and there exists contact resistance in the percolation network formed within PANI/NanoG composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pinto G, Jimenez-Martin A (2001) Polym Compos 22:65

    Article  CAS  Google Scholar 

  2. Hepel M (1998) J Electrochem Soc 145:124

    Article  CAS  Google Scholar 

  3. Flandin L, Bidan G, Brechet Y, Cavaile JY (2000) Polym Compos 21:165

    Article  CAS  Google Scholar 

  4. Wessling B, Posdorfer J (1999) Electrochim Acta 44:2053

    Article  Google Scholar 

  5. Roldughin VI, Vysotskii VV (2000) Prog Org Coat 39:81

    Article  CAS  Google Scholar 

  6. Sapurina I, Mokeev M, Lavrentev V (2000) Eur Polym J 36:2321

    Article  CAS  Google Scholar 

  7. Wang DH, Qi SH, Wu YM (2009) J Appl Polym Sci 110:3162

    Article  Google Scholar 

  8. Xiao P, Xiao M, Liu PG, Gong KC (2000) Carbon 38:623

    Article  Google Scholar 

  9. Shioyama H, Tatsumi K, Iwashita N (1998) Synth Met 96:229

    Article  CAS  Google Scholar 

  10. Xiao M, Sun L, Liu J (2002) Polymer 43:2245

    Article  CAS  Google Scholar 

  11. Kirkpatrick S (1973) Rev Mod Phys 45:574

    Article  Google Scholar 

  12. Carmona F (1989) Physica A 157:461

    Article  CAS  Google Scholar 

  13. Celzard A, Mareche JF, Furdin G (2000) Phys D Appl Phys 33:3094

    Article  CAS  Google Scholar 

  14. Lu W, Lin HF, Wu DJ (2006) Polymer 47:4440

    Article  CAS  Google Scholar 

  15. Chen GH, Wu DJ, Weng WG (2001) Polym Int 50:980

    Article  CAS  Google Scholar 

  16. Wenge Z, Shing CW (2002) Polymer 73:6767

    Google Scholar 

  17. Chen GH, Wu DJ, Weng WG (2001) Acta Polym Sin 6:803

    Google Scholar 

  18. Xiao P, Xiao M, Gong K (2001) Polymer 42:4813

    Article  CAS  Google Scholar 

  19. Chen GH, Wu DJ, Weng WG (2001) J Appl Polym Sci 82:2506

    Article  CAS  Google Scholar 

  20. Pan YX, Yu ZZ, Ou YC (2000) J Polym Sci Part B Polym Phys 38:1626

    Article  CAS  Google Scholar 

  21. Tchmutin IA, Ponomarenko AT, Efimov ON (2003) Carbon 41:1391

    Article  CAS  Google Scholar 

  22. Du XS, Xiao M, Meng YZ (2004) Eur Polym J 40:1489

    Article  CAS  Google Scholar 

  23. Chen GH, Weng WG, Wu DJ (2004) Carbon 42:753

    Article  CAS  Google Scholar 

  24. Chen GH, Weng WG, Wu DJ (2003) Eur Polym J 39:2329

    Article  CAS  Google Scholar 

  25. Chen GH, Wu DJ, Weng WG (2003) Polymer 44:1781

    Article  CAS  Google Scholar 

  26. Habsuda J, Simon GP, Cheng YB (2002) Polymer 44:4627

    Article  Google Scholar 

  27. Wang JJ, Zhu MY, Outlaw-Ron A (2004) Carbon 42:2867

    Article  CAS  Google Scholar 

  28. Mo ZL, Zuo DD, Chen H (2007) Eur Polym J 43:300

    Article  CAS  Google Scholar 

  29. Stauffer D, Aharony A (1991) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  30. Helsing J, Helte A (1991) J Appl Phys 69:3583

    Article  CAS  Google Scholar 

  31. Ruschau GR, Newnham RE (1992) J Compos Mater 26:2727

    Article  CAS  Google Scholar 

  32. Balberg I, Anderson CH, Alexander S (1984) Phys Rev B 30:3933

    Article  Google Scholar 

  33. Hu YH, Liu JF, Dong HB (1998) Polym Sci Eng 14:59

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the help of Ms. Shi for SEM photograph and thank Ms. Li Liefeng for the TEM photograph. The authors are also thankful to the companies and relatives who kindly offered the materials and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Qi, S., He, J. et al. High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites. J Mater Sci 45, 483–489 (2010). https://doi.org/10.1007/s10853-009-3965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3965-y

Keywords

Navigation