CC BY-ND-NC 4.0 · Synthesis 2017; 49(23): 5238-5250
DOI: 10.1055/s-0036-1590931
paper
Copyright with the author

Synthesis of Chiral Thiourea-Thioxanthone Hybrids

Florian Mayr
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
,
Lisa-Marie Mohr
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
,
Elsa Rodriguez
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
,
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
› Author Affiliations
Financial support by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 665951 – ELICOS) and the Alexander von Humboldt­-Stiftung (postdoctoral fellowship to E. R.) is gratefully acknowledged­.
Further Information

Publication History

Received: 10 August 2017

Accepted: 12 September 2017

Publication Date:
19 October 2017 (online)


Abstract

Four different 1-aminocyclohexanes bearing a tethered thioxanthone group in the 2-position were prepared. The synthesis commenced with the respective N-protected β-amino acids, the carboxyl group of which was employed for the introduction of the thioxanthone moiety. After construction of the thioxanthone and protecting group removal, the conversion of the amino group into the respective thiourea was accomplished by treatment with N-3,5-bis(trifluoromethyl)phenyl isothiocyanate and yielded the title compounds in which the thioxanthone resides in different spatial positions relative to the thiourea motif. Overall yields varied between 20–35%.

Supporting Information

Primary Data

 
  • References

  • 1 Meier K. Zweifel H. J. Photochem. 1986; 35: 353
    • 2a Amirzadeh G. Schabel W. Makromol. Chem. 1981; 182: 2821
    • 2b Allonas X. Ley C. Bibaut C. Jacques P. Fouassier JP. Chem. Phys. Lett. 2000; 322: 483

      Examples:
    • 3a Hosaka S. Wakamatsu S. Tetrahedron Lett. 1968; 219
    • 3b Padwa A. Blacklock TJ. J. Am. Chem. Soc. 1977; 99: 2345
    • 3c Schultz PG. Dervan PB. J. Am. Chem. Soc. 1982; 104: 6660
    • 3d Padwa A. Kennedy GD. Wannamaker MW. J. Org. Chem. 1985; 50: 5334
    • 3e Zimmerman HE. Caufield CE. King RK. J. Am. Chem. Soc. 1985; 107: 7732
    • 3f Armesto D. Ortiz MJ. Agarrabeitia AR. El-Boulifi N. Angew. Chem. Int. Ed. 2005; 44: 7739
    • 3g Mayr F. Brimioulle R. Bach T. J. Org. Chem. 2016; 81: 6965
    • 3h Edtmüller V. Bach T. Tetrahedron 2017; 33: 5038
  • 4 Review: Brimioulle R. Lenhart D. Maturi MM. Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
    • 5a Alonso R. Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
    • 5b Tröster A. Alonso R. Bach T. J. Am. Chem. Soc. 2016; 138: 7808
  • 6 For a DFT study on the mechanism of this transformation, see: Yang Y. Wen Y. Dang Z. Yu H. J. Phys. Chem. A 2017; 121: 4552
  • 7 Ding W. Lu L.-Q. Zhou Q.-Q. Wei Y. Chen J.-R. Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 63

    • Reviews:
    • 8a Hof K. Lippert KM. Schreiner PR. In Science of Synthesis: Asymmetric Organocatalysis . List B. Maruoka K. Thieme; Stuttgart: 2012: 297-412
    • 8b Kotke M. Schreiner PR. In Hydrogen Bonding in Organic Synthesis . Pihko PM. Wiley-VCH; Weinheim: 2009: 141-251
    • 8c Connon SJ. Chem. Eur. J. 2006; 12: 5418
    • 8d Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520

      For recent work, see:
    • 9a Robertson GP. Farley AJ. M. Dixon DJ. Synlett 2016; 27: 21
    • 9b Jovanovic P. Petkovic M. Ivkovic B. Savic V. Tetrahedron: Asymmetry 2016; 27: 990
    • 9c Zhao K. Zhi Y. Shu T. Valkonen A. Rissanen K. Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
    • 9d Yan L.-J. Wang H.-F. Chen W.-X. Tao Y. Jin K.-J. Chen F.-E. ChemCatChem 2016; 8: 2249
    • 9e Günler ZI. Alfonso I. Jimeno C. Pericàs MA. Synthesis 2017; 49: 319
    • 9f Otevrel J. Bobal P. Synthesis 2017; 49: 593
    • 9g Jarvis CL. Hirschi JS. Vetticatt MJ. Seidel D. Angew. Chem. Int. Ed. 2017; 56: 2670
    • 9h Meninno S. Overgaard J. Lattanzi A. Synthesis 2017; 49: 1509
    • 10a Vallavoju N. Selvakumar S. Jockusch S. Sibi MP. Sivaguru J. Angew. Chem. Int. Ed. 2014; 53: 5604
    • 10b Vallavoju N. Selvakumar S. Jockusch S. Prabhakaran MT. Sibi MP. Sivaguru J. Adv. Synth. Catal. 2014; 356: 2763

      For a Lewis acid catalyzed version of the reaction, see:
    • 11a Guo H. Herdtweck E. Bach T. Angew. Chem. Int. Ed. 2010; 49: 7782
    • 11b Brimioulle R. Guo H. Bach T. Chem. Eur. J. 2012; 18: 7552
  • 12 Vallavoju N. Selvakumar S. Pemberton BC. Jockusch S. Sibi MP. Sivaguru J. Angew. Chem. Int. Ed. 2016; 55: 5446
  • 13 Telmesani R. Park SH. Lynch-Colameta T. Beeler AB. Angew. Chem. Int. Ed. 2015; 54: 11521
  • 14 Lippert KM. Hof K. Gerbig D. Ley D. Hausmann H. Guenther S. Schreiner PR. Eur. J. Org. Chem. 2012; 5919
    • 15a Bertucci MA. Lee SJ. Gagné MR. Chem. Commun. 2013; 49: 2055
    • 15b Tripathi CB. Mukherjee S. J. Org. Chem. 2012; 77: 1592
    • 15c Zhang X.-J. Liu S.-P. Lao J.-H. Du G.-J. Yan M. Chan AS. C. Tetrahedron: Asymmetry 2009; 20: 1451
    • 15d Alemán J. Milelli A. Cabrera S. Reyes E. Jørgensen KA. Chem. Eur. J. 2008; 14: 10958
    • 16a Stack JG. Curran DP. Geib SV. Rebek JJr. Ballester P. J. Am. Chem. Soc. 1992; 114: 7007
    • 16b Bach T. Bergmann H. Harms K. Angew. Chem. Int. Ed. 2000; 39: 2302
    • 16c Bach T. Bergmann H. Grosch B. Harms K. Herdtweck E. Synthesis 2001; 1395
    • 16d Bauer A. Westkämper F. Grimme S. Bach T. Nature 2005; 436: 1139
    • 16e Müller C. Bauer A. Bach T. Angew. Chem. Int. Ed. 2009; 48: 6640
    • 17a Jares-Erijman EA. Bapat CP. Lithgow-Bertelloni A. Rinehart KL. Sakai R. J. Org. Chem. 1993; 58: 5732
    • 17b Vincent A. Deschamps D. Martzel T. Lohier J.-F. Richards CJ. Gaumont A.-C. Perrio S. J. Org. Chem. 2016; 81: 3961
  • 18 Xing R.-G. Li Y.-N. Liu Q. Meng Q.-Y. Li J. Shen X.-X. Liu Z. Zhou B. Yao X. Liu Z.-L. Eur. J. Org. Chem. 2010; 6627
  • 19 Lee H. Kim M. Jun YM. Kim BH. Lee BM. Heteroat. Chem. 2011; 22: 158
    • 20a Hou J. Li Z. Fang Q. Feng C. Zhang H. Guo W. Wang H. Gu G. Tian Y. Liu P. Liu R. Lin J. Shi Y.-K. Yin Z. Shen J. Wang PG. J. Med. Chem. 2012; 55: 3066
    • 20b Belema M. Nguyen VN. Romine JL. St Laurent DR. Lopez OD. Goodrich JT. Nower PT. O’Boylell DR. Lemm JA. Fridell RA. Gao M. Fang H. Krause RG. Wang Y.-K. Oliver AJ. Good AC. Knipe JO. Meanwell NA. Snyder LB. J. Med. Chem. 2014; 57: 1995
    • 21a Dondas HA. Grigg R. Kilner C. Tetrahedron 2003; 59: 8481
    • 21b Contreras J.-M. Rival YM. Chayer S. Bourguignon J.-J. Wermuth CG. J. Med Chem. 1999; 42: 730
    • 22a Forró E. Fülöp F. Tetrahedron: Asymmetry 2004; 15: 573
    • 22b Chisholm CD. Fülöp F. Forró E. Wenzel TJ. Tetrahedron: Asymmetry 2010; 21: 2289
    • 24a Arora I. Sha AK. Tetrahedron 2016; 72: 5479
    • 24b Cao X.-Y. Zheng J.-C. Li Y.-X. Shu Z.-C. Sun X.-L. Wang B.-Q. Tang Y. Tetrahedron 2010; 66: 9703
    • 25a Bandyopadhyay D. Cruz J. Banik BK. Tetrahedron 2012; 68: 10686
    • 25b Chen K.-T. Huang D.-Y. Chiu C.-H. Lin W.-W. Liang P.-H. Cheng W.-C. Chem. Eur. J. 2015; 21: 11984
  • 26 Benzoyl deprotection: Shreykar MR. Sekar N. Tetrahedron Lett. 2016; 57: 4174
  • 27 For a previous synthesis of 21, see: Viña D. Santana L. Uriarte E. Quezada E. Valencia L. Synthesis 2004; 2517
  • 28 Reich H. J.; Structure Determination by NMR; Vicinal Proton-Proton Coupling 3JHH ; Chap. 5.05; retrieved from https://www.chem.wisc.edu/areas/reich/chem605/ (accessed Aug. 1, 2017)
  • 29 The A-value for the parent ethynyl group is tabulated as 0.41–0.52: Eliel EL. Wilen SH. Stereochemistry of Organic Compounds . Wiley-Interscience; New York: 1994: 696-697
    • 30a Inokuma T. Suzuki Y. Sakaeda T. Takemoto Y. Chem. Asian J. 2011; 6: 2902
    • 30b Neubert A. Barnes D. Kwak Y.-S. Nakajima K. Bebernitz GR. Coppola GM. Kirman L. Serrano-Wu MH. Stams T. Topiol SW. Vedananda TF. Wareing JR. Patent WO2007115058 (A2), 2007
    • 31a Mancuso AJ. Huang S-L. Swern D. J. Org. Chem. 1978; 43: 2480
    • 31b De Lucca GV. Kim UT. Vargo BJ. Duncia JV. Santella JB. III. Gardner DS. Zheng C. Liauw A. Wang Z. Emmett G. Wacker DA. Welch PK. Covington M. Stowell NC. Wadman EA. Das AM. Davies P. Yeleswaram S. Graden DM. Solomon KA. Newton RC. Trainor GL. Decicco CP. Ko SS. J. Med. Chem. 2005; 48: 2194
    • 32a Seyferth D. Marmor RS. Hilbert P. J. Org. Chem. 1971; 36: 1379
    • 32b Gilbert JC. Weerasooriya U. J. Org. Chem. 1979; 44: 4997
    • 32c Hauske JR. Dorff P. Julin S. Martinelli G. Bussolari J. Tetrahedron Lett. 1992; 33: 3715
    • 33a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett. 1975; 4467
    • 33b Krishnendu B. Soumen S. Swapnadeep J. Umasish J. J. Org. Chem. 2012; 77: 8780
  • 34 Gilman H. Diehl JW. J. Org. Chem. 1959; 24: 1914
    • 35a Schultz AG. Lucci RD. J. Org. Chem. 1975; 40: 1371
    • 35b Schultz AG. Lucci RD. Fu WY. Berger MH. Erhardt J. Hagmann WK. J. Am. Chem. Soc. 1978; 100: 2150
    • 35c Burke TR. Jr. Jacobson AE. Rice KC. Silverton JV. J. Org. Chem. 1984; 49: 1051
  • 36 Münster N. Parker NA. van Dijk L. Paton RS. Smith MD. Angew. Chem. Int. Ed. 2017; 56: 9468
  • 37 Armarego WL. F. Chai CL. L. Purification of Laboratory Chemicals . Butterworth-Heinemann; Burlington USA: 2003: 29-30