Synthesis 2012(6): 946-952  
DOI: 10.1055/s-0031-1289721
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper(I)-Mediated 1,2-Metallate Rearrangements of 1-Metallated Glycals

Krzysztof Jarowicki, Philip Kocieński*, Zofia Komsta, Anna Wojtasiewicz
Institute of Process Research & Development, School of Chemistry, Leeds University, Leeds LS2 9JT, UK
e-Mail: p.j.kocienski@leeds.ac.uk;
Further Information

Publication History

Received 2 December 2011
Publication Date:
24 February 2012 (online)

Abstract

1,2-Metallate rearrangements involving reaction of 1-metallated glycals with organolithium reagents under copper(I) mediation give alkenylpolyol chains in 45-91% yield (19 examples). The reaction was applied to a formal synthesis of KRN7000 as well as a synthesis of a Δ5,6-ceramide derivative.

    References

  • 1 Kocieński P. Wadman S. Cooper K. J. Am. Chem. Soc.  1989,  111:  2363 
  • 2 Fujisawa T. Kurita Y. Kawashima M. Sato T. Chem. Lett.  1982,  1642 
  • 3 Kocieński PJ. Barber C. Pure Appl. Chem.  1990,  62:  1933 
  • 4 Kocieński P. In Organic Synthesis via Organometallics   Enders D. Gais H.-J. Keim W. Verlag Vieweg; Wiesbaden: 1993.  p.203 
  • 5 Jarowicki K. Kocieński PJ. Qun L. Org. Synth. Coll. Vol. 10   Wiley; New York: 2004.  p.662 
  • 6 Jarowicki K. Kocieński P. Norris S. O’Shea M. Stocks M. Synthesis  1995,  195 
  • 7 Pommier A. Stepanenko V. Jarowicki K. Kocieński PJ. J. Org. Chem.  2003,  68:  4008 
  • 8 Fargeas V. Ménez PL. Berque I. Ardisson J. Pancrazi A. Tetrahedron  1996,  52:  6613 
  • 9 Ashworth P. Broadbelt B. Jankowski P. Kocieński P. Pimm A. Bell R. Synthesis  1995,  199 
  • 10 Hareau-Vittini G. Kocieński P. Reid G. Synthesis  1995,  1007 
  • 11 Hareau-Vittini G. Kocieński P. Synlett  1995,  893 
  • 12 Milne JE. Jarowicki K. Kocieński PJ. Alonso J. Chem. Commun.  2002,  426 
  • 13 Lesimple P. Beau J.-M. Sinaÿ P. J. Chem. Soc., Chem. Commun.  1985,  894 
  • 14 Gunn A. Jarowicki K. Kocieński P. Lockhart S. Synthesis  2001,  331 
  • 15 Braun M. Mahler H. Justus Liebigs Ann.  1995,  29 
  • 16 Bures E. Spinazzé PG. Beese G. Hunt IR. Rogers C. Keay BA. J. Org. Chem.  1997,  62:  8741 
  • 17 Comanita BM. Woo S. Fallis AG. Tetrahedron Lett.  1999,  40:  5283 
  • 18 Simpkins SME. Kariuki BM. Aricó CS. Cox LR. Org. Lett.  2003,  5:  3971 
  • 19 Yamago S. Fujita K. Miyoshi M. Kotani M. Yoshida J. Org. Lett.  2005,  7:  909 
  • 20 Mori H. Matsuo T. Yoshioka Y. Katsumura S. J. Org. Chem.  2006,  71:  9004 
  • 23 Jarowicki K. Kilner C. Kocieński PJ. Komsta Z. Milne JE. Wojtasiewicz A. Coombs V. Synthesis  2008,  2747 
  • 24 Zhang H.-C. Brakta M. Daves GD. Tetrahedron Lett.  1993,  34:  1571 
  • 25 Natori T. Koezuka Y. Higa T. Tetrahedron Lett.  1993,  34:  5591 
  • 26 Natori T. Morita M. Akimoto K. Koezuka Y. Tetrahedron  1994,  50:  2771 
  • 27 Banchet-Cadeddu A. Hénon E. Dauchez M. Renault J.-H. Monneaux F. Haudrechy A. Org. Biomol. Chem.  2011,  9:  3080 
  • 28 Chen G. Chien M. Tsuji M. Franck RW. ChemBioChem  2006,  7:  1017 
  • 29 Franck RW. Tsuji M. Acc. Chem. Res.  2006,  39:  692 
  • 30 Morita M. Motoki K. Akimoto K. Natori T. Sakai T. Sawa E. Yamaji K. Koezuka Y. Kobayashi E. Fukushima H. J. Med. Chem.  1995,  38:  2176 
  • 31 Enders D. Terteryan V. Paleček J. Synthesis  2010,  2979 
  • 32 Meek SJ. O’Brien RV. Llaveria J. Schrock RR. Hoveyda AH. Nature  2011,  471:  461 
  • 33 Figueroa-Pérez S. Schmidt RR. Carbohydr. Res.  2000,  328:  95 
  • 36 Black FJ. Kocieński PJ. Org. Biomol. Chem.  2010,  8:  1188 
21

In all of our earlier studies we routinely used Me2S as a cosolvent on the assumption that it stabilised the higher order cuprate intermediates. However, we later discovered that Me2S is deleterious to the CuCN-mediated reactions in some cases. In the case of CuBr-mediated reactions, the presence of Me2S as a co-solvent generally had a neutral or beneficial effect.

22

A further advantage to procedure 1 is that CuCN is stable in its Cu(I) oxidation state and hence requires no further purification whereas CuBr should be purified as its Me2S complex since Cu(II) contamination can cause messy reactions and low yields.

34

During their pioneering studies on the synthesis of agelasphin analogues that led to the discovery of KRN7000, Koezuka and co-workers had prepared Δ5,6-sphinganine precursors (see ref. 30).

35

By contrast 1,2-metallate rearrangements of simple lithiated dihydrofurans and dihydropyrans mediated by CuCN require only 1.1-1.5 equivalents of the organolithium reagent or 2.2 equivalents if the corresponding stannane is used.