Skip to main content
Log in

Early Ontogeny of the Climbing Perch Anabas testudineus (Anabantidae) in Relation to the Buoyancy Dynamics

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

This article describes early development of the climbing perch Anabas testudineus in relation to its buoyancy dynamics. Main patterns of the ontogeny during the first 140 h of development are described. The climbing perch is characterized by positive buoyancy of eggs and early larvae not usually found in other freshwater fish. This allows the fish development close to the surface of the water and is enabled by a large oil globule in the yolk. The data on the spatial orientation of the larva body, their vertical distribution in the water column, the beginning of exogenous feeding and locomotion, and the fright reaction of the larvae at different ages are presented. The most significant changes in the behavior of the climbing perch larvae are associated with changing the shape of the yolk sac, beginning to function as a provisional hydrostatic organ from about the 80s hour of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Some researchers allocate a separate order Anabantiformes (Ruggieroetal., 2015; Betancur-Retal., 2017).

  2. During the experiment, the transfer of fish to a mixed diet was noted. However, for the entire period after hatching, the term “larva” is used in the work.

  3. Here and below: outside the brackets is the median; in parentheses, the limits of variation of the indicator.

REFERENCES

  1. Alexander, R.McN., The structure of the Weberian apparatus in the Siluri, Proc. Zool. Soc. London, 1964, vol. 142, pp. 419–440.

    Article  Google Scholar 

  2. Amornsakun, T., Sriwatana, W., and Promkaew, P., Some aspects in early life stage of Siamese gourami, Trichogaster pectoralis (Regan) larvae, Songklanakarin J. Sci. Technol., 2004, vol. 26, no. 3, pp. 347–356.

    Google Scholar 

  3. Amornsakun, T., Sriwatana, W., and Promkaew, P., Some aspects in early life stage of climbing perch, Anabas testudineus larvae, Songklanakarin J. Sci. Technol., 2005, vol. 27, no. 1, pp. 403–418.

    Google Scholar 

  4. Amornsakun, T., Kullai, S., and Hassan, A., Some aspects in early life stage of giant gourami, Osphronemus gouramy (Lacepede) larvae, Songklanakarin J. Sci. Technol., 2014, vol. 36, no. 5, pp. 493–498.

    Google Scholar 

  5. Battle, H.I. and Sprules, W.M., A description of the semi-buoyant eggs and early developmental stages of the goldeye, Hiodon alosoides (Rafinesque), J. Fish. Res. Board Can., 1960, vol. 17, no. 2, pp. 245–266.

    Article  Google Scholar 

  6. Betancur-R, R., Wiley, E., Bailly, N., et al., Phylogenetic classification of bony fishes, BMC Evol. Biol., 2017, vol. 17, p. e162. https://doi.org/10.1186/s12862-017-0958-3

    Article  Google Scholar 

  7. Bhimachar, B.S., David, A., and Muniappa, B., Observations on the acclimatization, nesting habits and early development of Osphronemus goramy (Lacépède), Proc. Indian Acad. Sci., 1944, vol. 20, no. 3, pp. 88–101.

    Google Scholar 

  8. Britz, R., Egg surface structure and larval cement glands in nandid and badid fishes (Teleostei, Percomorpha), with remarks on phylogeny and zoogeography, Am. Mus. Novit., 1997, no. 3195, pp. 1–17.

  9. Chalde, T., Elisio, M., and Miranda, L.A., Quality of pejerrey (Odontesthes bonariensis) eggs and larvae in captivity throughout spawning season, Neotrop. Ichthyol., 2014, vol. 12, no. 3, pp. 629–634.

    Article  Google Scholar 

  10. Chatain, B., La vessie natatoire chez Dicentrarchus labrax et Sparus auratus, Aquaculture, 1986, vol. 53, nos. 3–4, pp. 303–311.

    Article  Google Scholar 

  11. Chernyaev, Zh.A., Vertical chamber for observation of egg development of salmon fishes, Vopr. Ikhtiol., 1962, vol. 2, no. 3, pp. 457–462.

    Google Scholar 

  12. Craik, J.C.A. and Harvey, S.M., The causes of buoyancy in eggs of marine teleosts, J. Mar. Biol. Assoc. U.K., 1987, vol. 67, no. 1, pp. 169–182.

    Article  Google Scholar 

  13. Davis, C.C., A planktonic fish egg from fresh water, Limnol. Oceanogr., 1959, vol. 4, pp. 352–355.

    Article  Google Scholar 

  14. De Sousa, W.T.Z. and Severi, W., Desenvolvimento larval inicial de Helostoma temminckii Cuvier & Valenciennes (Helostomatidae, Perciformes), Rev. Bras. Zool., 2000, vol. 17, no. 3, pp. 637–644.

    Article  Google Scholar 

  15. Dzerzhinsky, K.F., Suspended matter and hydrobiont buoyancy as exemplified by fish eggs, Dokl. Biol. Sci., 2012, vol. 443, no. 1, pp. 106–108.

    Article  CAS  PubMed  Google Scholar 

  16. Dzerzhinskiy, K.F., Evaluation of buoyancy dynamics in the early ontogenesis of climbing perch Anabas testudineus (Anabantidae), J. Ichthyol., 2016, vol. 56, no. 1, p. 133–140.

    Article  Google Scholar 

  17. Dzerzhinskii, K.F. and Zworykin, D.D., Yolk sac as provisional yolk sac as a hydrostatic provisional organ of the climbing perch (Anabas testudineus), Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Ekologiya, evolyutsiya i sistematika zhivotnykh” (Proc. Int. Sci.-Pract. Conf. “Ecology, Evolution, and Systematics of the Animals”), Ryazan: Golos Gubernii, 2012, pp. 245–246.

  18. Gee, J.H., Buoyancy and aerial respiration: factors influencing the evolution of reduced swim-bladder volume of some Central American catfishes (Trichomycteridae, Callichthyidae, Loricariidae, Astroblepidae), Can. J. Zool., 1976, vol. 54, pp. 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  19. Gee, J.H. and Gee, P.A., Aquatic surface respiration, buoyancy control and the evolution of air-breathing in gobies (Gobiidae: Pisces), J. Exp. Biol., 1995, vol. 198, pp. 79–89.

    CAS  PubMed  Google Scholar 

  20. Hale, M.E., Long, J.H., McHenry, M.J., and Westneat, M.W., Evolution of behavior and neural control of the fast-start escape response, Evolution, 2002, vol. 56, no. 5, pp. 993–1007.

    Article  PubMed  Google Scholar 

  21. Hamm, J.T. and Hinton, D.E., The role of development and duration of exposure to the embryotoxicity of diazinon, Aquat. Toxicol., 2000, vol. 48, no. 4, pp. 403–418.

    Article  CAS  PubMed  Google Scholar 

  22. Hasan, R.N., Hydrostatic significance of accessory respiratory organs in some air-breathing fishes, Copeia, 1966, no. 1, pp. 136–139.

  23. Hodges, W. and Behre, E., Breeding behavior, early embryology, and melanophore development in the anabantid fish, Trichogaster trichopterus, Copeia, 1953, no. 2, pp. 100–107.

  24. Hollander, M. and Wolfe, D.A., Nonparametric Statistical Methods, New York: Wiley, 1999.

    Google Scholar 

  25. Hopson, A.J., A description of the pelagic embryos and larval stages of Lates niloticus (L.) (Pisces: Centropomidae) from Lake Chad, with a review of early development in lower percoid fishes, Zool. J. Linn. Soc., 1969, vol. 48, no. 1, pp. 117–134.

    Article  Google Scholar 

  26. Islam, S., Ray, L.R., Boidya, P., et al., Embryonic development of banded gourami, Colisa fasciata in captive condition, J. Entomol. Zool. Stud., 2017, vol. 5, no. 6, pp. 420–425.

    Google Scholar 

  27. Kimmel, C.B., Patterson, J., and Kimmel, R.O., The development and behavioral characteristics of the startle response in the zebra fish, Dev. Psychobiol., 1974, vol. 7, no. 1, pp. 47–60.

    Article  CAS  PubMed  Google Scholar 

  28. Kjesbu, O.S., Kryvi, H., Sundby, S., and Solemdal, P., Buoyancy variations in eggs of Atlantic cod (Gadus morhua L.) in relation to chorion thickness and egg size: theory and observations, J. Fish Biol., 1992, vol. 41, no. 4, pp. 581–599.

    Article  Google Scholar 

  29. Li, G., Muller, U.K., van Leeuwen, J.L., and Liu, H., Escape trajectories are deflected when fish larvae intercept their own C-start wake, J. R. Soc. Interface, 2014, vol. 11, no. 101. https://doi.org/10.1098/rsif.2014.0848

  30. Lindsey, B.W., Smith, F.M., and Croll, R.P., From inflation to flotation: contribution of the swimbladder to whole-body density and swimming depth during development of the zebrafish (Danio rerio), Zebrafish, 2010, vol. 7, no. 1, pp. 85–96.

    Article  PubMed  Google Scholar 

  31. Makeeva, A.P. and Pavlov, D.S., Morphological characteristics and general features for determination of eggs of Russian pelagic freshwater fishes, Vopr. Ikhtiol., 2000, vol. 40, no. 6, pp. 780–791.

    Google Scholar 

  32. Makeeva, A.P., Pavlov, D.S., and Pavlov, D.A., Atlas molodi presnovodnykh ryb Rossii (Atlas of Freshwater Fish Juveniles of Russia), Moscow: KMK, 2011.

  33. Mellinger, J., La flottabilite des fufs de téléostéens, Ann. Biol., 1994, vol. 33, no. 3, pp. 117–138.

    Google Scholar 

  34. Moitra, A., Ghosh, T.K., Pandey, A., and Munshi, J.S.D., Scanning electron microscopy of the post-embryonic stages of the climbing perch, Anabas testudineus, Jpn. J. Ichthyol., 1987, vol. 34, no. 1, pp. 53–58.

    Article  Google Scholar 

  35. Morioka, S., Ito, S., Kitamura, S., and Vongvichith, B., Growth and morphological development of laboratory-reared larval and juvenile climbing perch Anabas testudineus, Ichthyol. Res., 2009, vol. 56, no. 2, pp. 162–171.

    Article  Google Scholar 

  36. Morioka, S., Chanthasone, P., Phommachan, P., and Vongvichith, B., Growth and morphological development of laboratory-reared larval and juvenile three-spot gourami Trichogaster trichopterus, Ichthyol. Res., 2012, vol. 59, no. 1, pp. 53–62.

    Article  Google Scholar 

  37. Nissling, A., Kryvi, H., and Vallin, L., Variation in egg buoyancy of Baltic cod (Gadus morhua) and its implications for egg survival in prevailing conditions in the Baltic Sea, Mar. Ecol.: Prog. Ser., 1994, vol. 110, pp. 67–74.

    Article  Google Scholar 

  38. Noakes, D.L.G. and Godin, J.-G.J., Ontogeny of behavior and concurrent developmental changes in sensory systems in teleost fishes, Fish Physiol., 1988, vol. 11, part B, pp. 345–395.

  39. Palińska-Żarska, K., Żarski, D., Krejszeff, S., et al., Dynamics of yolk sac and oil droplet utilization and behavioral aspects of swim bladder inflation in burbot, Lota lota L., larvae during the first days of life, under laboratory conditions, Aquacult. Int., 2014, vol. 22, no. 1, pp. 13–27.

    Article  Google Scholar 

  40. Power, J.H., Morriwson, W.L., and Zeringue, J., Determining the mass, volume, density, and weight in water of small zooplankters, Mar. Biol., 1991, vol. 110, pp. 267–271.

    Article  Google Scholar 

  41. Qasim, S.Z. and Hasan, R.A., Hydrostatic function of the accessory respiratory organs in air-breathing fishes, Nature, 1961, vol. 191, pp. 396–397.

    Article  CAS  PubMed  Google Scholar 

  42. Roberts, A.C., Reichl, J., Song, M.Y., et al., Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade, PLoS One, 2011, vol. 6, no. 12, p. e29132. https://doi.org/10.1371/journal.pone.0029132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts, A.C., Pearce, K.C., Choe, R.C., et al., Long-term habituation of the C-start escape response in zebrafish larvae, Neurobiol. Learn. Mem., 2016, vol. 134, no. 3, pp. 360–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruggiero, M.A., Gordon, D.P., Orrell, T.M., et al., A higher level classification of all living organisms, PloS One, 2015, vol. 10, no. 4, p. e0119248. https://doi.org/10.1371/journal.pone.0119248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rüber, L., Britz, R., and Zardoya, R., Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei), Syst. Biol., 2006, vol. 55, no. 3, pp. 374–397.

    Article  PubMed  Google Scholar 

  46. Saha, S., Behera, S., Bhakta, D., and Mandal, A., Breeding and embryonic development of an indigenous ornamental fish Trichogaster lalius (Hamilton, 1822) in captive condition, J. Entomol. Zool. Stud., 2017, vol. 5, no. 3, pp. 111–115.

    Google Scholar 

  47. Sarkar, S., Rai, B.K., Bhutia, D., et al., Study on the breeding performance and developmental stages of climbing perch, Anabas testudineus (Bloch, 1792) in the laboratory (Siliguri, India), Int. J. Fish. Aquat. Stud., 2015, vol. 2, no. 6, pp. 198–201.

    Google Scholar 

  48. Schmidt-Nielsen, K., Animal Physiology: Adaptation and Environment, Cambridge: Cambridge Univ. Press, 1979.

    Google Scholar 

  49. Soin, S.G., Prisposobitel’nye osobennosti razvitiya ryb (Adaptive Features of Fish Development), Moscow: Mosk. Gos. Univ., 1968.

  50. Soin, S.G., Avni, A.A., and Dorbachev, V.P., Adaptive features of development of climbing perches (Anabantidae), Vopr. Ikhtiol., 1973, vol. 13, no. 6 (83), pp. 1056–1064.

  51. Steen, J.B., The swim bladder as a hydrostatic organ, in Fish Physiology, Hoar, W.S. and Randall, D.J., Eds., New York: Academic, 1970, vol. 4, pp. 413–443.

    Google Scholar 

  52. Summerfelt, R.C., Intensive culture of walleye fry, in Walleye Culture Manual, NCRAC Culture Serires vol. 101, Summerfelt, R.C., Ed., Ames: Iowa State Univ., 1996, pp. 161–185.

  53. The Physiology of Fishes, Evans, D.H., Ed., Boca Raton, FL: CRC Press, 1998.

    Google Scholar 

  54. Trotter, A.J., Pankhurst, P.M., and Battaglene, S.C., A finite interval of initial swimbladder inflation in Latris lineata revealed by sequential removal of water-surface films, J. Fish Biol., 2005, vol. 67, no. 3, pp. 730–741.

    Article  Google Scholar 

  55. Villalobos, S.A., Hamm, J.T., Teh, S.J., and Hinton, D.E., Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of chorion, Aquat. Toxicol., 2000, vol. 48, pp. 309–326.

    Article  CAS  PubMed  Google Scholar 

  56. Witt, W.C., Wen, L., and Lauder, G.V., Hydrodynamics of C-start escape responses of fish as studied with simple physical models, Integr. Comp. Biol., 2015, vol. 55, no. 4, pp. 728–739.

    Article  PubMed  Google Scholar 

  57. Zalina, I., Saad, C.R., Christianus, A., and Harmin, S.A., Induced breeding and embryonic development of climbing perch (Anabas testudineus, Bloch), J. Fish. Aquat. Sci., 2012, vol. 7, no. 5, pp. 291–306.

    Article  Google Scholar 

  58. Zotin, A.I., Fiziologiya vodnogo obmena u zarodyshei ryb i kruglorotykh (Physiology of Water Exchange in Fish Embryos and Cyclostomata), Moscow: Akad. Nauk SSSR, 1961.

  59. Zworykin, D.D., Reproduction and spawning behavior of the climbing perch Anabas testudineus (Perciformes, Anabantidae) in an aquarium, J. Ichthyol., 2012, vol. 52, no. 6, pp. 379–388.

    Article  Google Scholar 

  60. Zworykin, D.D., Phylogenesis of reproductive strategies in labyrinth fishes (Anabantoidei) and their sister groups, Biol. Bull. Rev., 2017, vol. 7, no. 5, p. 428–441.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Đinh Thị Hải Yến and Võ Thị Hà (Coastal Branch of Vietnam–Russian Tropical Center) for their help in work organizing and implementation.

Funding

The study was performed in the framework of the “Ecolan E-3.2” topic, “Reproduction, Reproductive and Feeding Behavior of Anabantid Fishes” section of the Tropical Research and Technological Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Dzerzhinskiy.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzerzhinskiy, K.F., Zworykin, D.D. & Budaev, S.V. Early Ontogeny of the Climbing Perch Anabas testudineus (Anabantidae) in Relation to the Buoyancy Dynamics. J. Ichthyol. 59, 766–775 (2019). https://doi.org/10.1134/S0032945219050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945219050023

Keywords:

Navigation