Skip to main content

Advertisement

Log in

The global energy balance from a surface perspective

Climate Dynamics Aims and scope Submit manuscript

Abstract

In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm−2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 and 397 Wm−2, respectively, this leaves 106 Wm−2 of surface net radiation available globally for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm−2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  • Allan RP, Ringer MA, Pamment JA, Slingo A (2004) Simulation of the Earth’s radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40). J Geophys Res 109:D18107. doi:10.1029/2004JD004816

    Article  Google Scholar 

  • Anderson DE, Cahalan RF (2005) The solar radiation and climate experiment (SORCE) mission for the NASA earth observing system (eos). Sol Phys 230(1–2):3–6. doi:10.1007/S11207-005-1592-6

    Article  Google Scholar 

  • Barkstrom BR (1984) The earth radiation budget experiment (ERBE). Bull Am Meteorol Soc 65(11):1170–1185

    Article  Google Scholar 

  • Berrisford P, Kallberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-interim. Q J Royal Meteorol Soc 137(659):1381–1399. doi:10.1002/Qj.864

    Article  Google Scholar 

  • Bodas-Salcedo A, Ringer MA, Jones A (2008) Evaluation of the surface radiation budget in the atmospheric component of the hadley centre global environmental model (hadgem1). J Clim 21(18):4723–4748. doi:10.1175/2008jcli2097.1

    Article  Google Scholar 

  • Chevallier F, Morcrette JJ (2000) Comparison of model fluxes with surface and top-of-the-atmosphere observations. Mon Weather Rev 128(11):3839–3852

    Article  Google Scholar 

  • Dutton EG (1993) An extended comparison between lowtran7 computed and observed broad-band thermal irradiances—global extreme and intermediate surface conditions. J Atmos Ocean Tech 10(3):326–336

    Article  Google Scholar 

  • Frohlich C (1991) History of solar radiometry and the world radiometric reference. Metrologia 28(3):111–115

    Article  Google Scholar 

  • Garratt JR (1994) Incoming shortwave fluxes at the surface—a comparison of gcm results with observations. J Clim 7(1):72–80

    Article  Google Scholar 

  • Garratt JR, Prata AJ (1996) Downwelling longwave fluxes at continental surfaces—a comparison of observations with gcm simulations and implications for the global land surface radiation budget. J Clim 9(3):646–655

    Article  Google Scholar 

  • Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim 11(8):2042–2061

    Article  Google Scholar 

  • Gleckler PJ, Weare BC (1997) Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J Clim 10(11):2764–2781

    Article  Google Scholar 

  • Gupta SK, Ritchey NA, Wilber AC, Whitlock CH, Gibson GG, Stackhouse PW (1999) A climatology of surface radiation budget derived from satellite data. J Clim 12(8):2691–2710

    Article  Google Scholar 

  • Gutowski WJ, Gutzler DS, Wang WC (1991) Surface-energy balances of 3 general-circulation models—implications for simulating regional climate change. J Clim 4(2):121–134

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11(24):13421–13449. doi:10.5194/Acp-11-13421-2011

    Article  Google Scholar 

  • Hartmann DL, Short DA (1980) On the use of earth radiation budget statistics for studies of clouds and climate. J Atmos Sci 37(6):1233–1250

    Article  Google Scholar 

  • Hartmann DL, Ramanathan V, Berroir A, Hunt GE (1986) Earth radiation budget data and climate research. Rev Geophys 24(2):439–468

    Article  Google Scholar 

  • Hatzianastassiou N, Vardavas I (1999) The net radiation budget of the northern hemisphere. J Geophys Res Atmos 104(D22):27341–27359

    Article  Google Scholar 

  • Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu GJ (2009) Improving the global precipitation record: Gpcp version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009gl040000

    Article  Google Scholar 

  • Iacono MJ, Mlawer EJ, Clough SA, Morcrette JJ (2000) Impact of an improved longwave radiation model, rrtm, on the energy budget and thermodynamic properties of the ncar community climate model, ccm3. J Geophys Res Atmos 105(D11):14873–14890

    Article  Google Scholar 

  • Kato S, Rose F, Sun-Mack S, Miller W, Chen Y, Rutan D, Stephens G, Loeb N, Minnis P, Wielicki B, Winker D, Charlock T, Stackhouse P, Xu K, Collins W (2011) Improvements of top-of-atmosphere and surface irradiance computations with calipso-, cloudsat-, and modis-derived cloud and aerosol properties. J Geophys Res 116:D19209. doi:10.1029/2011JD016050

    Article  Google Scholar 

  • Kato S, Loeb NG, Rutan DA, Rose FG, Sun-Mack S, Miller WF, Chen Y (2012) Uncertainty estimate of surface irradiances computed with modis-, calipso-, and cloudsat-derived cloud and aerosol properties. Surv Geophys 33(3–4):395–412. doi:10.1007/S10712-012-9179-X

    Article  Google Scholar 

  • Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu L, Weller R. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J Clim (in press)

  • Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78(2):197–208

    Article  Google Scholar 

  • Kim DY, Ramanathan V (2008) Solar radiation budget and radiative forcing due to aerosols and clouds. J Geophys Res Atmos 113(D2):D02203. doi:10.1029/2007jd008434

    Article  Google Scholar 

  • Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706. doi:10.1029/2010gl045777

    Article  Google Scholar 

  • Kopp G, Lawrence G, Rottman G (2005) The total irradiance monitor (tim): science results. Sol Phys 230(1–2):129–139. doi:10.1007/S11207-005-7433-9

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155

    Article  Google Scholar 

  • Li ZQ, Moreau L, Arking A (1997) On solar energy disposition: a perspective from observation and modeling. Bull Am Meteorol Soc 78(1):53–70

    Article  Google Scholar 

  • Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J Clim 22(3):748–766. doi:10.1175/2008jcli2637.1

    Article  Google Scholar 

  • Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5(2):110–113. doi:10.1038/Ngeo1375

    Article  Google Scholar 

  • Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465(7296):334–337. doi:10.1038/Nature09043

    Article  Google Scholar 

  • Markovic M, Jones CG, Vaillancourt PA, Paquin D, Winger K, Paquin-Ricard D (2008) An evaluation of the surface radiation budget over North America for a suite of regional climate models against surface station observations. Clim Dyn 31(7–8):779–794. doi:10.1007/s00382-008-0378-6

    Article  Google Scholar 

  • Marty C, Philipona R, Delamere J, Dutton EG, Michalsky J, Stamnes K, Storvold R, Stoffel T, Clough SA, Mlawer EJ (2003) Downward longwave irradiance uncertainty under Arctic atmospheres: measurements and modeling. J Geophys Res Atmos 108(D12):4358. doi:10.1029/2002jd002937

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458(7241):1014–1018. doi:10.1038/Nature07949

    Article  Google Scholar 

  • Michalsky J, Dutton E, Rubes M, Nelson D, Stoffel T, Wesley M, Splitt M, DeLuisi J (1999) Optimal measurement of surface shortwave irradiance using current instrumentation. J Atmos Ocean Tech 16(1):55–69

    Article  Google Scholar 

  • Michalsky JJ, Gueymard C, Kiedron P, McArthur LJB, Philipona R, Stoffel T (2007) A proposed working standard for the measurement of diffuse horizontal shortwave irradiance. J Geophys Res Atmos 112(D16):D16112. doi:10.1029/2007jd008651

    Article  Google Scholar 

  • Michalsky J, Dutton EG, Nelson D, Wendell J, Wilcox S, Andreas A, Gotseff P, Myers D, Reda I, Stoffel T, Behrens K, Carlund T, Finsterle W, Halliwell D (2011) An extensive comparison of commercial pyrheliometers under a wide range of routine observing conditions. J Atmos Ocean Tech 28(6):752–766. doi:10.1175/2010jtecha1518.1

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682

    Article  Google Scholar 

  • Morcrette JJ (2002) Assessment of the ecmwf model cloudiness and surface radiation fields at the arm sgp site. Mon Weather Rev 130(2):257–277

    Article  Google Scholar 

  • Ohmura A (2012) Present status and variations in the Arctic energy balance. Polar Sci 6:5–13

    Article  Google Scholar 

  • Ohmura A, Gilgen H (1993) Reevaluation of the global energy-balance. Interact Between Glob Clim Subsyst 75:93–110

    Article  Google Scholar 

  • Ohmura A, Gilgen H, Wild M (1989) Global energy balance archive GEBA, world climate program—water project a7. Zuercher Geografische Schriften 34. Zuerich

  • Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (bsrn/wcrp): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136

    Article  Google Scholar 

  • Ohmura A, Bauder A, Muller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46:367–374

    Article  Google Scholar 

  • Philipona R, Dutton EG, Stoffel T, Michalsky J, Reda I, Stifter A, Wendling P, Wood N, Clough SA, Mlawer EJ, Anderson G, Revercomb HE, Shippert TR (2001) Atmospheric longwave irradiance uncertainty: pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J Geophys Res Atmos 106(D22):28129–28141

    Article  Google Scholar 

  • Pinker RT, Frouin R, Li Z (1995) A review of satellite methods to derive surface shortwave irradiance. Remote Sens Environ 51(1):108–124

    Article  Google Scholar 

  • Potter GL, Cess RD (2004) Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J Geophys Res Atmos 109(D2):D02106. doi:10.1029/2003jd004018

    Article  Google Scholar 

  • Qian Y, Long CN, Wang H, Comstock JM, McFarlane SA, Xie S (2012) Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations. Atmos Chem Phys 12(4):1785–1810. doi:10.5194/Acp-12-1785-2012

    Article  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate—results from the Earth radiation budget experiment. Science 243(4887):57–63

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Atmosphere—aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  Google Scholar 

  • Raschke E, Ohmura A (2005) Radiation budget of the climate system. In: Hantel M (ed) Observed global climate vol 6. Landolt-börnstein—group v geophysics, numerical data and functional relationships in science and technology. Springer, Berlin, pp 25–46. doi:10.1007/b75667

    Google Scholar 

  • Roesch A, Wild M, Ohmura A, Dutton EG, Long CN, Zhang T (2011) Assessment of bsrn radiation records for the computation of monthly means. Atmos Meas Tech 4(2):339–354. doi:10.5194/Amt-4-339-2011

    Article  Google Scholar 

  • Stephens GL, Wild M, Stackhouse P, L’Ecuyer T, Kato S (2012a) The global character of the flux of downward longwave radiation. J Clim 25:2329–2340. doi:10.1175/JCLI-D-11-00262.1

    Article  Google Scholar 

  • Stephens GL, Li JL, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Andrews T (2012b) The energy balance of the earth’s climate system. Nat Geosci 5:691–696. doi:10.1038/ngeo1580

    Google Scholar 

  • Trager-Chatterjee C, Muller RW, Trentmann J, Bendix J (2010) Evaluation of ERA-40 and ERA-interim re-analysis incoming surface shortwave radiation datasets with mesoscale remote sensing data. Meteorol Z 19(6):631–640. doi:10.1127/0941-2948/2010/0466

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2010) Simulation of present-day and twentyfirst-century energy budgets of the Southern Oceans. J Clim 23:440–454

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2012) Tracking earth’s energy: from El Nino to global warming. Surv Geophys 33(3–4):413–426. doi:10.1007/S10712-011-9150-2

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311. doi:10.1175/2008bams2634.1

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131(612):2961–3012. doi:10.1256/Qj.04.176

    Article  Google Scholar 

  • Wielicki BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868

    Article  Google Scholar 

  • Wild M (2005) Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys Res Lett 32(7):L07704. doi:10.1029/2005gl022421

    Article  Google Scholar 

  • Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus A 60(5):932–945. doi:10.1111/J.1600-0870.2008.00342.X

    Article  Google Scholar 

  • Wild M (2012) New directions: a facelift for the picture of the global energy balance. Atmos Environ 55:366–367. doi:10.1016/j.atmosenv.2012.03.022

    Article  Google Scholar 

  • Wild M, Roeckner E (2006) Radiative fluxes in the ECHAM5 general circulation model. J Clim 19(16):3792–3809

    Article  Google Scholar 

  • Wild M, Schmucki E (2011) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and era40. Clim Dyn 37(7–8):1671–1688. doi:10.1007/S00382-010-0939-3

    Article  Google Scholar 

  • Wild M, Ohmura A, Gilgen H, Roeckner E (1995a) Regional climate simulation with a high-resolution GCM—surface radiative fluxes. Clim Dyn 11(8):469–486

    Article  Google Scholar 

  • Wild M, Ohmura A, Gilgen H, Roeckner E (1995b) Validation of general-circulation model radiative fluxes using surface observations. J Clim 8(5):1309–1324

    Article  Google Scholar 

  • Wild M, Ohmura A, Gilgen H, Roeckner E, Giorgetta M, Morcrette JJ (1998) The disposition of radiative energy in the global climate system: GCM-calculated versus observational estimates. Clim Dyn 14(12):853–869

    Article  Google Scholar 

  • Wild M, Ohmura A, Gilgen H, Morcrette JJ, Slingo A (2001) Evaluation of downward longwave radiation in general circulation models. J Clim 14(15):3227–3239

    Article  Google Scholar 

  • Wild M, Long CN, Ohmura A (2006) Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J Geophys Res Atmos 111(D1):D01104. doi:10.1029/2005jd006118

    Article  Google Scholar 

  • Wild M, Grieser J, Schaer C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35(17):L17706. doi:10.1029/2008gl034842

  • Wild M, Truessel B, Ohmura A, Long CN, Konig-Langlo G, Dutton EG, Tsvetkov A (2009) Global dimming and brightening: an update beyond 2000. J Geophys Res Atmos 114:D00d13. doi:10.1029/2008jd011382

    Article  Google Scholar 

  • Wong T, Wielicki BA, Lee RB, Smith GL, Bush KA, Willis JK (2006) Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner wfov data. J Clim 19(16):4028–4040

    Article  Google Scholar 

  • Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res Atmos 109(D19):D19105. doi:10.1029/2003jd004457

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Centre for Competence in Climate Research (NCCR Climate) of the Swiss National Science Foundation as part of the NCCR Project HyClim. We are grateful to Prof. Atsumu Ohmura for numerous discussions and for his leadership in the establishment of GEBA and BSRN. We highly acknowledge Barbara Schär for the design of the global energy balance figure. We would like to thank Dr. Guido Muller for processing the BSRN data and Dr. Urs Beyerle and Dr. Thierry Corti for all their efforts to download the immense CMIP5 dataset. We acknowledge the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, U.S. Department of Energy. We would like to take this opportunity to acknowledge many hard working site scientists, as listed in http://hdl.handle.net/10013/epic.40092.d001. BSRN data used in this study are available at http://dx.doi.org/10.1594/PANGAEA.792618. We dedicate this study to our dear friend and colleague Ellsworth G. Dutton, who passed away the day this paper was accepted. His enthusiasm and devotion as BSRN project manager over 20 years was invaluable for the success of BSRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, M., Folini, D., Schär, C. et al. The global energy balance from a surface perspective. Clim Dyn 40, 3107–3134 (2013). https://doi.org/10.1007/s00382-012-1569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1569-8

Keywords

Navigation