Skip to main content

Advertisement

Log in

Control of erythropoiesis after high altitude acclimatization

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Erythropoiesis was studied in 11 subjects submitted to a 4-h hypoxia (HH) in a hypobaric chamber (4,500 m, barometric pressure 58.9 kPa) both before and after a 3-week sojourn in the Andes. On return to sea level, increased red blood cells (+3.27%), packed cell volume (+4.76%), haemoglobin (+6.55%) (P<0.05), and increased arterial partial pressure of oxygen (+8.56%), arterial oxygen saturation (+7.40%) and arterial oxygen blood content (CaO2) (+12.93%) at the end of HH (P<0.05) attested high altitude acclimatization. Reticulocytes increased during HH after the sojourn only (+36.8% vs +17.9%, P<0.01) indicating a probable higher reticulocyte release and/or production despite decreased serum erythropoietin (EPO) concentrations (−46%, P<0.01). Hormones (thyroid, catecholamines and cortisol), iron status (serum iron, ferritin, transferrin and haptoglobin) and renal function (creatinine, renal, osmolar and free-water clearances) did not significantly vary (except for lower thyroid stimulating hormone at sea level, P<0.01). Levels of 2,3-diphosphoglycerate (2,3-DPG) increased throughout HH on return (+14.7%, P<0.05) and an inverse linear relationship was found between 2,3-DPG and EPO at the end of HH after the sojourn only (r=−0.66, P<0.03). Inverse linear relationships were also found between CaO2 and EPO at the end of HH before (r=−0.63, P<0.05) and after the sojourn (r=−0.60, P=0.05) with identical slopes but different ordinates at the origin, suggesting that the sensitivity but not the gain of the EPO response to hypoxia was modified by altitude acclimatization. Higher 2,3-DPG levels could partly explain this decreased sensitivity of the EPO response to hypoxia. In conclusion, we show that altitude acclimatization modifies the control of erythropoiesis not only at sea level, but also during a subsequent hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Böning D, Maassen N, Jochum F, Steinacker J, Halder A, Thomas A, Schmidt W, Noe G, Kubanek B (1997) After-effects of a high altitude expedition on blood. Int J Sports Med 18:179–185

    PubMed  Google Scholar 

  • Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788

    CAS  PubMed  Google Scholar 

  • Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258 :F1432–F1437

    CAS  PubMed  Google Scholar 

  • Erslev AJ (1991) Erythropoietin titers in health and disease. Semin Hematol 28 [Suppl 3]:2–7

    Google Scholar 

  • Erslev AJ, Caro J (1987) Erythropoietin titers in response to anemia or hypoxia. Blood Cells 13:207–216

    CAS  PubMed  Google Scholar 

  • Fried W, Barone Varelas J (1984) Regulation of the plasma erythropoietin level in hypoxic rats. Exp Hematol 12:706–711

    CAS  PubMed  Google Scholar 

  • Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367

    CAS  PubMed  Google Scholar 

  • Gunga HC, Kirsch K, Röcker L, Schobersberger W (1994) Time course of erythropoietin, triiodothyronine, thyroxine, and thyroid-stimulating hormone at 2,315 m. J Appl Physiol 76:1068–1072

    CAS  PubMed  Google Scholar 

  • Gunga HC, Wittels P, Gunther T, Kanduth B, Vormann J, Röcker L, Kirsch K (1996) Erythropoietin in 29 men during and after prolonged physical stress combined with food and fluid deprivation. Eur J Appl Physiol 73:11–16

    CAS  Google Scholar 

  • Hochachka PW, Gunga HC, Kirsch K (1998) Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc Natl Acad Sci USA 95:1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72 (2):449–489

    CAS  PubMed  Google Scholar 

  • Jelkmann W, Hellwig Burgel T (2001) Biology of erythropoietin. Adv Exp Med Biol 502:169–187

    CAS  PubMed  Google Scholar 

  • Kayser B (1992) Nutrition and high altitude exposure. Int J Sports Med 13 [Suppl 1]:S129–132

    Google Scholar 

  • Lenfant C, Sullivan K (1971) Adaptation to high altitude. N Engl J Med 284:1298–1309

    CAS  PubMed  Google Scholar 

  • Lenfant C, Torrance JD, Reynafarje C (1971) Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol 30:625–631

    CAS  PubMed  Google Scholar 

  • Lohman TG, Boileau RA, Massey BH (1975) Prediction of lean body mass in young boys from skinfold thickness and body weight. Hum Biol 45:245–262

    Google Scholar 

  • Mairbäurl H, Schobersberger W, Oelz O, Bartsch P, Eckardt KU, Bauer C (1990) Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate. J Appl Physiol 68:1186–1194

    PubMed  Google Scholar 

  • Mide SM, Huygens P, Bozzini CE, Fernandez Pol JA (2001) Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia. In Vivo 15:125–132

    CAS  PubMed  Google Scholar 

  • Milledge JS, Cotes PM (1985) Serum erythropoietin in humans at high altitude and its relation to plasma renin. J Appl Physiol 59:360–364

    CAS  PubMed  Google Scholar 

  • Richalet JP, Souberbielle JC, Antezana AM, Dechaux M, Le Trong JL, Bienvenu A, Daniel F, Blanchot C, Zittoun J (1994) Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am J Physiol 266 :R756–R764

    CAS  PubMed  Google Scholar 

  • Savourey G, Garcia N, Besnard Y, Guinet A, Hanniquet AM, Bittel J (1996) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: cardio-ventilatory and haematological changes. Eur J Appl Physiol 73:529–535

    CAS  Google Scholar 

  • Savourey G, Garcia N, Caravel J-P, Gharib C, Pouzeratte N, Martin S, Bittel J (1998) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level. Eur J Appl Physiol 77:37–43

    Article  CAS  Google Scholar 

  • Sawka MN, Young AJ, Rock PB, Lyons TP, Boushel R, Freund BJ, Muza SR, Cymerman A, Dennis RC, Pandolf KB, Valeri CR (1996) Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion. J Appl Physiol 81:636–642

    CAS  PubMed  Google Scholar 

  • Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32:332–348

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88 (4):1474–1480

    CAS  PubMed  Google Scholar 

  • Ward MP, Milledge JS, West JB (1995) High altitude medicine and physiology, 2nd edn. Chapman and Hall, London, p 497

  • Zhu H, Jackson T, Bunn HF (2002) Detecting and responding to hypoxia. Nephrol Dial Transplant 17 [Suppl 1]:3–7

    Google Scholar 

Download references

Acknowledgements

The subjects of the Mountain Club of the ESSA LYON-BRON are acknowledged, as well as the technical assistance of A. Alonso, A.M. Hanniquet, J. Denis, A. Vouillarmet, R.M. Cottet-Emard and F. Grimbert. A special recognition is given to Médecin général Jacques Bittel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustave Savourey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savourey, G., Launay, JC., Besnard, Y. et al. Control of erythropoiesis after high altitude acclimatization. Eur J Appl Physiol 93, 47–56 (2004). https://doi.org/10.1007/s00421-004-1159-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1159-5

Keywords

Navigation