Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Health consequences of shift work and implications for structural design

Abstract

The objective of the study was to perform a literature review on the health consequences of working rotating shifts and implications for structural design. A literature search was performed in June 2012 and a selection of the most relevant peer-review articles was included in the present review. Shift workers are more likely to suffer from a circadian sleep disorder characterized by sleepiness and insomnia. Shift work is associated with decreased productivity, impaired safety, diminished quality of life and adverse effects on health. Circadian disruption resulting from rotating shift work has also been associated with increased risk for metabolic syndrome, diabetes, cardiovascular disease and cancer. This article summarizes the known health effects of shift work and discusses how light can be used as a countermeasure to minimize circadian disruption at night while maintaining alertness. In the context of the lighted environment, implications for the design of newborn intensive care units are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Beers TM . Flexible schedules and shift work: replacing the '9-to-5' workday? Mthly Labor Rev (Bureau of Labor Statistics) 2000; 123: 6.

    Google Scholar 

  2. Moore RY . Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med 1997; 48: 253–266.

    Article  CAS  PubMed  Google Scholar 

  3. Rea M, Figueiro M, Bullough J . Circadian photobiology: an emerging framework for lighting practice and research. Light Res Technol 2002; 34: 177–190.

    Article  Google Scholar 

  4. Berson D, Dunn F, Takao M . Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  5. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 2001; 21: 6405–6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thapan K, Arendt J, Skene DJ . An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 2001; 535: 261–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rea MS, Figueiro MG, Bullough JD, Bierman A . A model of phototransduction by the human circadian system. Brain Res Rev 2005; 50: 213–228.

    Article  PubMed  Google Scholar 

  8. Jewett M, Rimmer D, Duffy J, Klerman E, Kronauer R, Czeisler C . Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am J Physiol 1997; 273: R1800–R1809.

    CAS  PubMed  Google Scholar 

  9. Khalsa SB, Jewett ME, Cajochen C, Czeisler CA . A phase response curve to single bright light pulses in human subjects. J Physiol 2003; 549: 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glickman G, Hanifin J, Rollag M, Wang J, Cooper H, Brainard G . Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans. J Biol Rhythms 2003; 18: 71–79.

    Article  CAS  PubMed  Google Scholar 

  11. Hebert M, Martin SK, Lee C, Eastman CI . The effects of prior light history on the suppression of melatonin by light in humans. J Pineal Res 2002; 33: 198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang AM, Scheer FA, Czeisler CA . The human circadian system adapts to prior photic history. J Physiol 2011; 589: 1095–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Straif K, Baan R, Grosse Y, Secretan B, Ghissassi FE, Bouvard V et al. Carcinogenicity of shift-work, painting, and fire-fighting (on behalf of the WHO International Agency for Research on Cancer Monograph Working Group). Lancet Oncol 2007; 8: 1065–1066.

    Article  PubMed  Google Scholar 

  14. Arendt J . Melatonin and the Mammalian Pineal Gland 1st edn Chapman & Hall: London, 1995.

    Google Scholar 

  15. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ . A review of the multiple actions of melatonin on the immune system. Endocrine 2005; 27: 189–200.

    Article  CAS  PubMed  Google Scholar 

  16. Erren TC, Reiter RJ, Piekarski C . Light, timing of biological rhythms, and chronodisruption in man. Naturwissenschaften 2003; 90: 485–494.

    Article  CAS  PubMed  Google Scholar 

  17. Chen LJ, Gao YQ, Li XJ, Shen DH, Sun FY . Melatonin protects against MPTP/MPP+ -induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 2005; 39: 34–42.

    Article  CAS  PubMed  Google Scholar 

  18. Panzer A, Lottering ML, Bianchi P, Glencross DK, Stark JH, Seegers JC . Melatonin has no effect on the growth, morphology or cell cycle of human breast cancer (MCF-7), cervical cancer (HeLa), osteosarcoma (MG-63) or lymphoblastoid (TK6) cells. Cancer Lett 1998; 122: 17–23.

    Article  CAS  PubMed  Google Scholar 

  19. Hill SM, Blask DE . Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res 1988; 48: 6121–6126.

    CAS  PubMed  Google Scholar 

  20. Cos S, Fernandez F, Sanchez-Barcelo EJ . Melatonin inhibits DNA synthesis in MCF-7 human breast cancer cells in vitro. Life Sci 1996; 58: 2447–2453.

    Article  CAS  PubMed  Google Scholar 

  21. Cos S, Fernandez R, Guezmes A, Sanchez-Barcelo EJ . Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res 1998; 58: 4383–4390.

    CAS  PubMed  Google Scholar 

  22. Mediavilla MD, Cos S, Sanchez-Barcelo EJ . Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci 1999; 65: 415–420.

    Article  CAS  PubMed  Google Scholar 

  23. Cos S, Mediavilla MD, Fernandez R, Gonzalez-Lamuno D, Sanchez-Barcelo EJ . Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res 2002; 32: 90–96.

    Article  CAS  PubMed  Google Scholar 

  24. Ying SW, Niles LP, Crocker C . Human malignant melanoma cells express high-affinity receptors for melatonin: antiproliferative effects of melatonin and 6-chloromelatonin. Eur J Pharmacol 1993; 246: 89–96.

    Article  CAS  PubMed  Google Scholar 

  25. Sze SF, Ng TB, Liu WK . Antiproliferative effect of pineal indoles on cultured tumor cell lines. J Pineal Res 1993; 14: 27–33.

    Article  CAS  PubMed  Google Scholar 

  26. Shiu SY, Li L, Xu JN, Pang CS, Wong JT, Pang SF . Melatonin-induced inhibition of proliferation and G1/S cell cycle transition delay of human choriocarcinoma JAr cells: possible involvement of MT2 (MEL1B) receptor. J Pineal Res 1999; 27: 183–192.

    Article  CAS  PubMed  Google Scholar 

  27. Petranka J, Baldwin W, Biermann J, Jayadev S, Barrett JC, Murphy E . The oncostatic action of melatonin in an ovarian carcinoma cell line. J Pineal Res 1999; 26: 129–136.

    Article  CAS  PubMed  Google Scholar 

  28. Kanishi Y, Kobayashi Y, Noda S, Ishizuka B, Saito K . Differential growth inhibitory effect of melatonin on two endometrial cancer cell lines. J Pineal Res 2000; 28: 227–233.

    Article  CAS  PubMed  Google Scholar 

  29. Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 2005; 65: 11174–11184.

    Article  CAS  PubMed  Google Scholar 

  30. Reiter RJ . Mechanisms of cancer inhibition by melatonin. J Pineal Res 2004; 37: 213–214.

    Article  CAS  PubMed  Google Scholar 

  31. Haus E, Smolensky M . Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 2006; 17: 489–500.

    Article  PubMed  Google Scholar 

  32. Haus E . Chronobiology of the mammalian response to ionizing radiation. Potential applications in oncology. Chronobiol Int 2002; 19: 77–100.

    Article  PubMed  Google Scholar 

  33. Filipski E, King VM, Li X, Granda TG, Mormont M-C, Liu X et al. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 2002; 94: 690–697.

    Article  PubMed  Google Scholar 

  34. Filipski E, King VM, Li X, Granda TG, Mormont M-C, Claustrat B et al. Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol 2003; 51: 216–219.

    Article  PubMed  Google Scholar 

  35. Schernhammer ES, Hankinson SE . Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst 2005; 97: 1084–1087.

    Article  CAS  PubMed  Google Scholar 

  36. Fu L, Lee CC . The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 2003; 3: 350–361.

    Article  CAS  PubMed  Google Scholar 

  37. You S, Wood PA, Xiong Y, Kobayashi M, Du-Quiton J, Hrushesky WJM . Daily coordination of cancer growth and circadian clock gene expression. Breast Cancer Res Treat 2005; 91: 47–60.

    Article  CAS  PubMed  Google Scholar 

  38. Metz RP, Qu X, Laffin B, Earnest D, Porter WW . Circadian clock and cell cycle gene expression in mouse mammary epithelial cells and in the developing mouse mammary gland. Dev Dyn 2006; 235: 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pukkala E, Auvinen H, Wahlberg G . Incidence of cancer among Finnish airline cabin attendants. BMJ 1995; 311: 649–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rafnsson V, Tulinius H, Jonasson JG, Hrafnkelsson J . Risk of breast cancer in female flight attendants: a population-based study (Iceland). Cancer Causes Control 2001; 12: 95–101.

    Article  CAS  PubMed  Google Scholar 

  41. Tynes T, Hannevik M, Andersen A, Vistnes AI, Haldorsen T . Incidence of breast cancer in Norwegian female radio and telegraph operators. Cancer Causes Control 1996; 7: 197–204.

    Article  CAS  PubMed  Google Scholar 

  42. Hansen J . Increased breast cancer risk among women who work predominantly at night. Epidemiology 2001; 12: 74–77.

    Article  CAS  PubMed  Google Scholar 

  43. Davis S, Mirick DK, Stevens RG . Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001; 93: 1557–1562.

    Article  CAS  PubMed  Google Scholar 

  44. Schernhammer ES, Laden F, Speizer FE, Willet WC, Hunter DJ, Kawahi I et al. Rotating night shifts and risk of breast cancer in women participating in the Nurses’ Health Study. J Natl Cancer Inst 2001; 93: 1563–1568.

    Article  CAS  PubMed  Google Scholar 

  45. Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES . Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer 2005; 41: 2023–2032.

    Article  PubMed  Google Scholar 

  46. Hansen J, Stevens RG . Night shiftwork and breast cancer risk: overall evidence. Occup Environ Med 2011; 68: 236.

    Article  PubMed  Google Scholar 

  47. Lie J-AS, Kjuus H, Zienolddiny S, Haugen A, Stevens RG, Kjærheim K . Night work and breast cancer risk among Norwegian nurses: assessment by different exposure metrics. Am J Epidemiol 2011; 173: 1272–1279.

    Article  PubMed  Google Scholar 

  48. Pesch B, Harth V, Rabstein S, Baisch C, Schiffermann M, Pallapies D et al. Night work and breast cancer—results from the German GENICA study. Scand J Work Environ Health 2010; 36: 134–141.

    Article  PubMed  Google Scholar 

  49. Pronk A, Ji B-T, Shu X-O, Xue S, Yang G, Li H-L et al. Night-shift work and breast cancer risk in a cohort of Chinese women. Am J Epidemiol 2010; 171: 953–959.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Farriol M, Venereo Y, Orta X, Castellanos JM, Segovia-Silvestre T . In vitro effects of melatonin on cell proliferation in a colon adenocarcinoma line. J Appl Toxicol 2000; 20: 21–24.

    Article  CAS  PubMed  Google Scholar 

  51. Anisimov VN, Popovich IG, Zabezhinski MA . Melatonin and colon carcinogenesis: I. Inhibitory effect of melatonin on development of intestinal tumors induced by 1,2-dimethylhydrazine in rats. Carcinogenesis 1997; 18: 1549–1553.

    Article  CAS  PubMed  Google Scholar 

  52. Anisimov VN, Kvetnoy IM, Chumakova NK, Kvetnaya TV, Molotkov AO, Pogudina NA et al. Melatonin and colon carcinogenesis. Exp Toxicol Pathol 1999; 51: 47–52.

    Article  CAS  PubMed  Google Scholar 

  53. Anisimov VN, Kvetnoy IM, Chumakova NK, Kvetnaya TV, Molotkov AO, Pogudina NA et al. Melatonin and colon carcinogenesis. III. Effect of melatonin on proliferative activity and apoptosis in colon mucosa and colon tumors induced by 1,2-dimethylhydrazine in rats. Exp Toxic Pathol 2000; 52: 71–76.

    Article  CAS  Google Scholar 

  54. Rafnsson V, Gunnarsdottir H . Mortality study of fertiliser manufacturers in Iceland. Br J Ind Med 1990; 47: 721–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor PJ, Pocock SJ . Mortality of shift and day workers 1956-68. Br J Ind Med 1972; 29: 201–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grundy A, Tranmer J, Richardson H, Graham CH, Aronson KJ . The influence of light at night exposure on melatonin levels among Canadian rotating shift nurses. Cancer Epidemiol Biomarkers Prev 2011; 20: 2404–2412.

    Article  CAS  PubMed  Google Scholar 

  57. Peplonska B, Bukowska A, Gromadzinska J, Sobala W, Reszka E, Lie J-A et al. Night shift work characteristics and 6-sulfatoxymelatonin (MT6s) in rotating night shift nurses and midwives. Occup Environ Med 2012; 69: 339–346.

    Article  PubMed  Google Scholar 

  58. Langley AR, Graham CH, Grundy AL, Tranmer JE, Richardson H, Aronson KJ . A cross-sectional study of breast cancer biomarkers among shift working nurses. BMJ Open 2012; 2: e000532.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schernhammer ES, Kroenke CH, Laden F, Hankinson SE . Night work and risk of breast cancer. Epidemiology 2006; 17: 108–111.

    Article  PubMed  Google Scholar 

  60. Dumont M, Lanctôt V, Cadieux-Viau R, Paquet J . Melatonin production and light exposure of rotating night workers. Chronobiol Int 2012; 29: 203–210.

    Article  CAS  PubMed  Google Scholar 

  61. Viitasalo K, Lindström J, Hemiö K, Puttonen S, Koho A, Härmä M et al. Occupational health care identifies risk for type 2 diabetes and cardiovascular disease. Prim Care Diabetes 2012; 6: 95–102.

    Article  PubMed  Google Scholar 

  62. Brown DL, Feskanich D, Sánchez BN, Rexrode KM, Schernhammer ES, Lisabeth LD . Rotating night shift work and the risk of ischemic stroke. Am J Epidemiol 2009; 169: 1370–1377.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T . Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 2004; 27: 1453–1462.

    Article  PubMed  Google Scholar 

  64. Pan A, Schernhammer ES, Sun Q, Hu FB . Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med 2011; 8: e1001141.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP . Obesity and shift work: chronobiological aspects. Nutr Res Rev 2010; 23: 155–168.

    Article  CAS  PubMed  Google Scholar 

  66. Knutsson A, Bøggild H . Gastrointestinal disorders among shift workers. Scand J Work Environ Health 2010; 36: 85–95.

    Article  PubMed  Google Scholar 

  67. Lawson CC, Rocheleau CM, Whelan EA, Lividoti Hibert EN, Grajewski B, Spiegelman D et al. Occupational exposures among nurses and risk of spontaneous abortion. Am J Obstet Gynecol 2012; 206: 327 e1–8.

    Article  PubMed  Google Scholar 

  68. Mahoney MM . Shift work, jet lag, and female reproduction. Int J Endocrinol 2010; 2010: 813764.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Badia P, Myers B, Boeckner M, Culpepper J, Harsh JR . Bright light effects on body temperature, alertness, EEG and behavior. Physiol Behav 1991; 50: 583–588.

    Article  CAS  PubMed  Google Scholar 

  70. Cajochen C, Zeitzer JM, Czeisler CA, Dijk DJ . Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav Brain Res 2000; 115: 75–83.

    Article  CAS  PubMed  Google Scholar 

  71. Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, Oelhafen P et al. High sensitivity of human melatonin, alertness, thermoregulation and heart rate to short wavelength light. J Clin Endocrinol Metab 2005; 90: 1311–1316.

    Article  CAS  PubMed  Google Scholar 

  72. Figueiro MG, Rea MS, Boyce P, White R, Kolberg K . The effects of bright light on day and night shift nurses’ performance and well-being in the NICU. Neonatal Intens Care 2001; 14: 29–32.

    Google Scholar 

  73. Smith MR, Fogg LF, Eastman CI . A compromise circadian phase position for permanent night work improves mood, fatigue, and performance. Sleep 2009; 32: 1481–1489.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Figueiro MG, Bullough JD, Bierman A, Fay CR, Rea MS . On light as an alerting stimulus at night. Acta Neurobiol Exp (Wars) 2007; 67: 171–178.

    Google Scholar 

  75. Figueiro MG, Bierman A, Plitnick B, Rea MS . Preliminary evidence that both blue and red light can induce alertness at night. BMC Neurosci 2009; 10: 105.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Figuero MG, Rea MS . The effects of red and blue lights on circadian variations in cortisol, alpha amylase and melatonin. Int J Endocrinol 2010; 2010: 829351.

    Google Scholar 

  77. Phipps-Nelson J, Redman JR, Bijk DJ, Rajaratnam SM . Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep 2003; 26: 695–700.

    Article  PubMed  Google Scholar 

  78. Vandewalle G, Balteau E, Phillips C, Degueldre C, Moreau V, Sterpenich V et al. Daytime light exposure dynamically enhances brain responses. Curr Biol 2006; 16: 1616–1621.

    Article  CAS  PubMed  Google Scholar 

  79. Smith-Coggins R, Howard SK, Mac DT, Wang C, Kwan S, Rosekind MR et al. Improving alertness and performance in emergency department physicians and nurses: the use of planned naps. Am Emerg Med 2006; 48: 596–604.

    Article  Google Scholar 

  80. Jewett ME, Wyatt JK, Ritz-De Cecco A, Khalsa SB, Dijk DJ, Czeisler CA . Time course of sleep inertia dissipation in human performance and alertness. J Sleep Res 1999; 8: 1–8.

    Article  CAS  PubMed  Google Scholar 

  81. Rea MS, Bierman A, Figueiro MG, Bullough JD . A new approach to understanding the impact of circadian disruption on human health. J Circadian Rhythms 2008; 6: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Miller D, Bierman A, Figueiro MG, Schernhammer E, Rea MS . Ecological measurements of light exposure, activity, and circadian disruption in real-world environments. Light Res Technol 2010; 42: 271–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bierman A, Klein TR, Rea MS . The Daysimeter: a device for measuring optical radiation as a stimulus for the human circadian system. Meas Sci Technol 2005; 16: 2292–2299.

    Article  CAS  Google Scholar 

  84. Figueiro MG, Hammer R, Bierman A, Rea MS . Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol 2012 in press.

Download references

Acknowledgements

We like to acknowledge Mark Rea, Rebekah Mullaney and Nicholas Hanford for their technical and editorial assistance. The Office of Naval Research (award no. N000141110572) funded some of the work presented in this manuscript. This publication has been sponsored by Lifespan Healthcare LLC, Philips Healthcare and Pediatrix Medical Group. The sponsoring entities for this publication had no involvement in the preparation or alteration of the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Figueiro.

Ethics declarations

Competing interests

Rensselaer Polytechnic Institute received speaking fees from Acuity Lighting on behalf of MGF. RDW is employed by Pediatrix and owner of WhiteBriar Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiro, M., White, R. Health consequences of shift work and implications for structural design. J Perinatol 33 (Suppl 1), S17–S23 (2013). https://doi.org/10.1038/jp.2013.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2013.7

Keywords

This article is cited by

Search

Quick links