Skip to main content
Log in

Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Mitochondrial autophagy eliminates damaged mitochondria and decreases reactive oxygen species (ROS). The autophagy inhibitor chloroquine (CQ) potentiates temozolomide (TMZ) cytotoxicity in glioma cells, but it is not known whether CQ does this by inhibiting mitochondrial autophagy. The effects of CQ and TMZ on MitoSOX Red fluorescence, a mitochondrial ROS indicator, and cell death were examined in rat C6 glioma cells. Mitochondrial autophagy was monitored by the colocalization of MitoTracker Red fluorescence and EGFP-LC3 dots. Mitochondrial content was measured by MitoTracker Green fluorescence and immunoblotting for a mitochondrial protein. Finally, CQ’s effects on tumor cells derived from a glioblastoma patient and human U87-MG glioblastoma cells were assessed. TMZ (100–1,000 μM) alone did not affect mitochondrial ROS or cell death in C6 cells, but when administered with CQ (10 μM), it increased mitochondrial ROS and cell death. Antioxidants significantly suppressed the CQ-augmented cell death in TMZ-treated cells, indicating that mitochondrial ROS were involved in this cell death. TMZ treatment reduced MitoTracker Green fluorescence and mitochondrial protein levels, and these effects were inhibited by CQ. TMZ also increased the colocalization of EGFP-LC3 dots with mitochondria, and CQ enhanced this effect. CQ potentiated TMZ-induced cytotoxicity in patient-derived glioblastoma cells as well as human U87-MG glioblastoma cells. These results suggest that CQ increases cellular ROS and augments TMZ cytotoxicity in glioma cells by inhibiting mitochondrial autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144(5):337–343

    Article  CAS  PubMed  Google Scholar 

  2. Briceno E, Calderon A, Sotelo J (2007) Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg Neurol 67(4):388–391

    Article  PubMed  Google Scholar 

  3. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13(24):7271–7279

    Article  CAS  PubMed  Google Scholar 

  5. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2):326–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Han W, Sun J, Feng L, Wang K, Li D, Pan Q et al (2011) Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS ONE 6(12):e28491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gini B, Zanca C, Guo D, Matsutani T, Masui K, Ikegami S et al (2013) The mTOR kinase inhibitors, CC214-1 and CC214-2, preferentially block the growth of EGFRvIII-activated glioblastomas. Clin Cancer Res 19(20):5722–5732

    Article  CAS  PubMed  Google Scholar 

  8. Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72(7):1773–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  PubMed  Google Scholar 

  11. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  CAS  PubMed  Google Scholar 

  13. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC et al (2010) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    Article  CAS  PubMed  Google Scholar 

  15. Ducharme J, Farinotti R (1996) Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 31(4):257–274

    Article  CAS  PubMed  Google Scholar 

  16. Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM et al (2011) Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7(2):188–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 793:325–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7):547–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ et al (2011) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108(39):16259–16264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lin CJ, Lee CC, Shih YL, Lin CH, Wang SH, Chen TH et al (2012) Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS ONE 7(6):e38706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14(3):548–558

    Article  CAS  PubMed  Google Scholar 

  25. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  27. Ozawa A, Kadowaki E, Haga Y, Sekiguchi H, Hemmi N, Kaneko T et al (2013) Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res 1537:37–45

    Article  CAS  PubMed  Google Scholar 

  28. Kuo TC, Yang JS, Lin MW, Hsu SC, Lin JJ, Lin HJ et al (2009) Emodin has cytotoxic and protective effects in rat C6 glioma cells: roles of Mdr1a and nuclear factor kappaB in cell survival. J Pharmacol Exp Ther 330(3):736–744

    Article  CAS  PubMed  Google Scholar 

  29. Gilbert MR, Liu Y, Neltner J, Pu H, Morris A, Sunkara M et al (2014) Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol 127(2):221–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 24791513) and from Adaptive and Seamless Technology Transfer Program through target-driven R&G, JST.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments were conducted in compliance with the ethics committee of Sapporo Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kuno.

Additional information

Yusuke S Hori and Ryusuke Hosoda have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hori, Y.S., Hosoda, R., Akiyama, Y. et al. Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J Neurooncol 122, 11–20 (2015). https://doi.org/10.1007/s11060-014-1686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1686-9

Keywords

Navigation