Skip to main content
Log in

Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this ‘waste’ product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under free-living conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abeysekera RM, Newcomb W, Silvester WB and Torrey JG 1990 A freeze-fracture electron-microscopic study of Frankia in root-nodules of alnus-incana grown at 3 oxygen-tensions. Can. J. Microbiol. 36 97–108

    Google Scholar 

  • Alloisio N, Querioux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, Yamaura M, Kakoi K and Kucho K-I 2010 The Frankia alni transcriptome. MPMI 23 593–607

  • Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ 1990 Basic local alignment search tool. J. Mol. Biol. 215 403–410

    PubMed  CAS  Google Scholar 

  • Appleby CA 1969a Electron transport systems of rhizobium japonicum .2. rhizobium haemoglobin cytochromes and oxidases in free-living (cultured) cells. Biochim. Biophys. Acta 172 88–105

    Article  PubMed  CAS  Google Scholar 

  • Appleby CA 1969b Electron transport systems of rhizobium japonicum. I. Haemoprotein P-450 other co-reactive pigments cytochromes and oxidases in bacteroids from N2-fixing root nodules. Biochim. Biophys. Acta 172 71–87

  • Appleby CA, Bergersen FJ, Gibson AH, Gresshoff PM and Trinick MJ 1981 Rhizobium cytochrome function in the presence and absence of leghemoglobin. Proc. Aust. Biochem. Soc. 14 117–117

    Google Scholar 

  • Arredondo-Peter R, Hargrove MS, Moran JF, Sarath G and Klucas RV 1998 Plant hemoglobins. Plant Physiol. 118 1121–1125

    Article  PubMed  CAS  Google Scholar 

  • Baffert C, Demuez M, Cournac L, Burlat B, Guigliarelli B, Bertrand P, Girbal L and Leger C 2008 Hydrogen-activating enzymes: Activity does not correlate with oxygen sensitivity. Angewandte Chemie 47 2052–2054

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J and Sayers EW 2011 GenBank. Nucleic Acids Res. 39 D32–D37

    Article  PubMed  CAS  Google Scholar 

  • Benson DR and Silvester WB 1993 Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev. 57 293–319

    Google Scholar 

  • Berg RH 1983 Preliminary evidence for the involvement of suberization in infection of Casuarina. Can. J. Bot. 61 2910–2918

    Article  CAS  Google Scholar 

  • Berg RH 1994 Symbiotic vesicle ultrastructure in high pressure-frozen, freeze-substituted Actinorhizae. Protoplasma 183 37–48

    Article  Google Scholar 

  • Berg RH and Mcdowell L 1988 Chemistry of the cell wall of infected cells in Casuarina Actinorhizae. Can. J. Bot. 66 2038–2047

    Article  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR and Jones AD 1993 Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Nat. Acad. Sci. USA 90 6091–6094

    Google Scholar 

  • Berry AM, Mendoza-Herrera A, Guo YY, Hayashi J, Persson T, Barabote R, Demchenko K, Zhang SX, et al. 2011 New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct. Plant Biol. 38 645–652

    Article  CAS  Google Scholar 

  • Berry AM, Moreau RA and Jones AD 1991 Bacteriohopanetetrol - abundant lipid in Frankia cells and in nitrogen-fixing nodule tissue. Plant Physiol. 95 111–115

    Google Scholar 

  • Dixon RO D and Wheeler CT 1986 Biochemistry of nitrogen fixation; in Nitrogen fixation in plants (eds) ROD Dixon and CT Wheeler (Glasgow, UK: Blackie & Son Ltd)

  • Dobritsa SV, Potter D, Gookin TE and Berry AM 2001 Hopanoid lipids in Frankia: identification of squalene-hopene cyclase gene sequences. Can. J. Microbiol. 47 535–540

    Google Scholar 

  • Edgar RC 2004 MUSCLE: Multiple sequence alignment with improved accuracy and speed. 2004 IEEE Computational Systems Bioinformatics Conference, Proceedings 728–729

  • Fleming AI, Wittenberg JB, Wittenberg BA, Dudman WF and Appleby CA 1987 The purification, characterization and ligand-binding kinetics of hemoglobins from root-nodules of the non-leguminous Casuarina-Glauca-Frankia symbiosis. Biochim. Biophys. Acta 911 209–220

    Article  CAS  Google Scholar 

  • Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M and Fontecilla-Camps JC 1999 The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7 557–566

    Article  PubMed  CAS  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, et al. 2012 The genome portal of the Department of Energy Joint Genome Institute (JGI). Nucleic Acids Res. 4 26–32

    Article  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LAJ and Igamberdiev AU 2011 Plant hemoglobins: Important palyers at the crossroads between oxygen and nitric oxide. FEBS Lett. 585 3843–3849

    Article  PubMed  CAS  Google Scholar 

  • Harriott OT, Khairallah L and Benson DR 1991 Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia Sp strain Cpi1. J. Bacteriol. 173 2061–2067

    Google Scholar 

  • Harris SL and Silvester WB 1992 Oxygen controls the development of Frankia vesicles in continuous culture. New Phytol. 121 43–48

  • Huss-Danell K and Bergman B 1990 Nitrogenase in Frankia from root-nodules of Alnus-Incana (L) Moench - immunolocalization of the Fe-proteins and Mofe-proteins during vesicle differentiation. New Phytol. 116 443–455

  • Kleemann G, Alskog G, Berry AM and Huss-Danell K 1994 Lipid-composition and nitrogenase activity of symbiotic Frankia (Alnus-Incana) in response to different oxygen concentrations. Protoplasma 183 107–115

    Google Scholar 

  • Lechevalier MP and Lechevalier HA 1990 Systematics, isolateion, and culture of Frankia; in The biology of Frankia and actinorhizal plants (eds) CR Schwintzer and JD Tjepkema (New York: Academic Press, Inc) pp 35–60

    Google Scholar 

  • Leul M, Normand P and Sellstedt A 2007 The organization, regulation and phylogeny of uptake hydrogenases genes in Frankia. Physiol. Plant. 130 464–470

    Google Scholar 

  • Leul M, Normand P and Sellstedt A 2009 The phylogeny of uptake hydrogenases in Frankia. Int. Microbiol. 12 23–28

    Google Scholar 

  • Liu C, He Y and Chang Z 2004 Truncated hemoglobin o of Mycobacterium tuberculosis: the oligomeric state change and the interactionwith membrane components. Biochem. Biophys. Res. Commun. 316 1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Liebgott PP, deLacey AL, Burlat B, Cournac L, Richaud P, Brugna M, Fernandez VM, Guigliarelli B, Rousset M, Le´ger C and Dementin S 2011 Original design of an oxygen-tolerant [Ni-Fe] hydrogenase: major effect of a valine-to-cystein mutation near the active site. J. Am. Chem. Soc. 133 986–997

    Article  PubMed  CAS  Google Scholar 

  • Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J and Carrondo MA 2001 [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 angstrom and modelling studies of its interaction with the tetrahaem cytochrome c(3). J. Biol. Inorg. Chem. 6 63–81

    Article  PubMed  CAS  Google Scholar 

  • Mattsson U and Sellstedt A 2000 Hydrogenase in Frankia KB5: Expression of and relation to nitrogenase. Can. J. Microbiol. 46 1091–1095

  • Meesters TM, Vanvliet WM and Akkermans ADL 1987 Nitrogenase is restricted to the vesicles in Frankia strain Ean1pec. Physiol. Plant. 70 267–271

    Google Scholar 

  • Mohapatra A, Leul M, Mattsson U and Sellstedt A 2004 A hydrogen-evolving enzyme is present in Frankia sp R43. FEMS Microbiol. Lett. 236 235–240

    Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M and Fontecillacamps JC 1997 Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat. Struct. Biol. 4 523–526

    Article  PubMed  CAS  Google Scholar 

  • Murry MA, Zhongze Z and Torrey JG 1985 Effect of O2 on vesicle formation, acetylene reduction, and O2-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana. Can. J. Microbiol. 31 804–809

    Google Scholar 

  • Nathan C and Shiloh MU 2000 Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Nat. Acad. Sci. USA 97 8841–8848

    Article  PubMed  CAS  Google Scholar 

  • Newcomb W, Jackson SL and Wood SM 1987 Morphogenesis of nitrogen-fixing actinorhizal and leguminous root-nodules. Endocytobiosis Cell Res. 4 356–356

    Google Scholar 

  • Newcomb W and Wood SM 1987 Morphogenesis and fine-structure of Frankia (Actinomycetales) - the microsymbiont of nitrogen-fixing actinorhizal root-nodules. Int. Rev. Cytol 109 1–88

    Google Scholar 

  • Nielsen M, Lundegaard C, Lund O and Petersen TN 2010 CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res. 38 W576–W581

    Article  PubMed  CAS  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, et al. 2007a Genome characteristics of facultatively symbiotic Frankia sp strains reflect host range and host plant biogeography. Genome Res. 17 7–15

  • Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S and Medigue C 2007b Exploring the genomes of Frankia. Physiol. Plant. 130 331–343

  • Ogata H, Kellers P and Lubitz W 2010 The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: Characterization of the oxidized enzyme (Ni-A State). J. Mol. Biol. 402 428–444

    Article  PubMed  CAS  Google Scholar 

  • Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J and Guertin M 2002 Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Nat. Acad. Sci. USA 99 5902–5907

    Google Scholar 

  • Parsons R, Silvester WB, Harris S, Gruijters WTM and Bullivant S 1987 Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol. 83 728–731

    Google Scholar 

  • Pathania R, Navani NK, Rajamohan G. and Dikshit KL 2002 Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli. J. Biol. Chem. 277 15293–15302

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Jacobsen KR, Alloisio N, Denison RF, Klein M, Tjepkema JD, Winzer T, Sirrenberg A, Guan C and Berry AM 2007 Truncated hemoglobins in Actinorhizal nodules of Datisca glomerata. Plant Biol. 9 776–785

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW 2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29 e45

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Roseboom W, Happe RP, Bagley KA and Albracht SPJ 1999 Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases - NiFe(CN)(2)CO, biology's way to activate H-2. J. Biol. Chem. 274 3331–3337

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Tatusova T and Maglott DR 2007 NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35 D61–D65

    Article  PubMed  CAS  Google Scholar 

  • Robson R 2001 Biodiversity of hydrogenases; in Hydrogen as fuel: Learning from nature (eds) R Cammack and KY Florence (London: Taylor & Francis) pp 73–92

    Google Scholar 

  • Rozen S and Skaletsky H 2000 Primer3 on the WWW for general users and for biologist programmers; in Bioinformatics methods and protocols: Methods in molecular biology (ed) S Krawetz and S Misener (Totowa: Humana Press) pp 365–386

    Google Scholar 

  • Schrödinger L 2010 The PyMOL Molecular Graphics System, Version 1.5.0.4.

  • Sellstedt A and Mattsson U 1994 Hydrogen metabolism in Casuarina-Frankia - immunolocalization of nitrogenase and hydrogenase. Soil Biol. Biochem. 26 583–592

    Article  CAS  Google Scholar 

  • Sellstedt A, Reddell P and Rosbrook P 1991a The occurrence of hemoglobin and hydrogenase in nodules of 12 Casuarina-Frankia symbiotic associations. Physiol. Plant. 82 458–464

    Article  CAS  Google Scholar 

  • Sellstedt A, Reddell P, Rosbrook PA and Ziehr A 1991b The relations of hemoglobin and lignin-like compounds to acetylene-reduction in symbiotic Casuarina. J. Expt. Bot. 42 1331–1337

    Article  CAS  Google Scholar 

  • Siedenburg G and Jendrossek D 2011 Squalene-Hopene Cyclases. Appl. Environ. Microbiol. 77 3905–3915

    Article  PubMed  CAS  Google Scholar 

  • Suharjo UKJ and Tjepkema JD 1995 Occurrence of hemoglobin in the nitrogen-fixing root-nodules of Alnus-Glutinosa. Physiol. Plant. 95 247–252

    Article  CAS  Google Scholar 

  • Tjepkema JD 1983 Hemoglobins in the nitrogen-fixing root-nodules of actinorhizal plants. Can. J. Bot. 61 2924–2929

    Article  CAS  Google Scholar 

  • Tjepkema JD and Asa DJ 1987 Total and co-reactive heme content of actinorhizal nodules and the roots of some nonnodulated plants. Plant Soil 100 225–236

    Article  CAS  Google Scholar 

  • Tjepkema JD, Cashon RE, Beckwith J and Schwintzer CR 2002 Hemoglobin in Frankia, a nitrogen-fixing actinomycete. Appl. Environ. Microbiol. 68 2629–2631

    Google Scholar 

  • Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fevre F, Longin C, et al. 2013 MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 41 E636–E647

    Article  Google Scholar 

  • Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, et al. 2006 MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res. 34 53–65

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM 2007 Hydrogenases and H+ readuction in primary energy conservation. Results Probl. Cell Differ. 45 1223–1252

    Google Scholar 

  • Vignais PM and Billoud B 2007 Occurrence, classification, and biological function of hydrogenase: an overview. Chem. Rev. 107 4206–4272

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M and Fontecillacamps JC 1995 Crystal-structure of the nickel-iron hydrogenase from Desulfovibrio-Gigas. Nature 373 580–587

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A and Fontecilla-Camps JC 2003 The active site and catalytic mechanism of NiFe hydrogenases. Dalton Trans. 4030–4038

  • Wittenberg JB, Bolognesi M, Wittenberg BA and Guertin M 2002 Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277 871–874

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Carl Tryggers Foundation, Sweden (AS, RK), the French National Research Agency, France (PP), the National Centre for Scientific Research, France (PP), and the ANR, under the auspices of the SEZAM programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sellstedt.

Additional information

[Richau KH, Kudahettige RL, Pujic P, Kudahettige NP and Sellstedt A 2013 Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia. J. Biosci. 38 1–10] DOI10.1007/s12038-013-9372-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richau, K., Kudahettige, R., Pujic, P. et al. Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia . J Biosci 38, 703–712 (2013). https://doi.org/10.1007/s12038-013-9372-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9372-1

Keywords

Navigation