All Issue

2020 Vol.52, Issue 5
30 October 2020. pp. 5-14
Abstract
References

Literature Cited

1

Klouda, L. and Mikos, A. G., Thermoresponsive hydrogels in biomedical applications, Eur. J. Pharm. Biopharm. 68(1):34-45 (2008).

10.1016/j.ejpb.2007.02.025
2

Habibi, Y. and Dufresne, A., Highly filled bionanocomposites from functionalized polysaccharide nanocrystals, Biomacromolecules 9(7):1974-1980 (2008).

10.1021/bm8001717
3

Hassan, M. L., Hassan, E. A., and Oksman, K. N., Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites, J. Mater. Sci. 46(6):1732-1740 (2011).

10.1007/s10853-010-4992-4
4

Lin, N. and Dufresne, A., Nanocellulose in biomedicine: Current status and future prospect, Eur. Polym. J. 59:302-325 (2014).

10.1016/j.eurpolymj.2014.07.025
5

Jorfi, M. and Foster, E. J., Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci. 132(14):1-19 (2015).

6

Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., and Goswami, S., Commercial application of cellulose nano-composites – A review, Biotechnol. 21 (2019).

10.1016/j.btre.2019.e00316
7

Prakash, M. M., Selvakumar, R., Kumar, P. S., and Ramakrishna, S., Extraction and modification of cellulose nanofibers derived from biomass for environmental application, RSC Adv. 7(68):42750-42773 (2017).

10.1039/C7RA06713E
8

Shak, K. P. Y., Pang, Y. L., and Mah, S. K., Nanocellulose: Recent advances and its prospects in environmental remediation, Beilstein J. Nanotechnol. 9(1):2479-2498 (2018).

10.3762/bjnano.9.232
9

Chaker, A., Mutje, P., Vilaseca, F., and Boufi, S., Reinforcing potential of nanofibrillated cellulose from nonwoody plants, Polym. Compos. 34(12):1999-2007 (2013).

10

Khalil, A. H. P. S., Davoudpour Y., Islam, M., Mustapha, A., Sudesh, K., Dungani, R., and Jawaid, M., Production and modification of nanofibrillated cellulose using various mechanical processes: A review, Carbohydr. Polym. 99:649-665 (2014).

10.1016/j.carbpol.2013.08.069
11

Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., and Lindström, T., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gel, Biomacromolecules 8(6):1934-1941 (2007).

10.1021/bm061215p
12

Saito, T., Kimura, S., Nishiyama, Y., and Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8(8):2485-2491 (2007).

10.1021/bm0703970
13

Isogai, A., Saito, T., and Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 3(1):71–85 (2011).

10.1039/C0NR00583E
14

Naderi, A., Lindström, T., and Sundström, J., Carboxymethylated nanofibrillated cellulose: Rheological studies, Cellulose 21(3):1561-1571 (2014).

10.1007/s10570-014-0192-8
15

Naderi, A. and Lindstrȍm, T., A comparative study of the rheological properties of three different nanofibrillated cellulose systems, Nord. Pulp Pap. Res. J. 31(3): 354-363 (2016).

10.3183/npprj-2016-31-03-p354-363
16

Moberg, T., Sahlin, K., Yao, K., Geng, S., Westman, G., Zhou, Q., Oksman, K., and Rigdahl, M., Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics, Cellulose 24(6):2499-2510 (2017).

10.1007/s10570-017-1283-0
17

Onyianta, A. J., Dorris, M., and Williams, R. L., Aqueous morpholine pre-treatment in cellulose nanofibril (CNF) production: comparison with carboxymethylation and TEMPO oxidization pre-treatment methods, Cellulose 25(2):1047-1064 (2018).

10.1007/s10570-017-1631-0
18

Šebenik, U., Krajnc, M., Alič, B., and Lapasin, R., Ageing of aqueous TEMPO-oxidized nanofibrillated cellulose dispersions: a rheological study, Cellulose 26:917-931 (2019).

10.1007/s10570-018-2128-1
19

Chai, Q., Jiao, Y., and Yu, X., Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them, Gels 3(1):649-665 (2017).

10.3390/gels3010006
20

Nascimento, D. M., Nunes, Y. L., Figueirêdo, M. C. B., Azeredo, H. M. C., Aouada, F. A., Feitosa, J. P. A., Rosa, M. F., and Dufresne, A., Nanocellulose nanocomposite hydrogels: Technological and environmental issues, Green Chem. 20(11):2428-2448 (2018).

10.1039/C8GC00205C
21

Kabir, S. M. F., Sikdar, P. P., Haque, B., Bhuiyan, M. A. R., Ali, A., and Islam, M. N., Cellulose-based hydrogel materials: chemistry, properties and their prospective applications, Prog. Biomater. 7(3):153-174 (2018).

10.1007/s40204-018-0095-0
22

Fu, L. H., Qi, C., Ma, M. G., and Wan, P., Multifunctional cellulose-based hydrogels for biomedical applications, J. Mater. Chem. B 7(10):1541-1562 (2019).

10.1039/C8TB02331J
23

Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., and Li, B., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications, Carbohydr. Polym. 209(1):130-144 (2019).

10.1016/j.carbpol.2019.01.020
24

Liu, X., Qu, J., Wang, A., Wang, C., Chen, B., Wang, Z., Wu, B., Wei, B., Wen, Y., and Yuan, Z., Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid, Carbohydr. Polym. 212:67-74 (2019).

10.1016/j.carbpol.2019.02.036
25

Zander, N. E., Dong, H., Steele, J., and Grant, J. T., Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates, ACS Appl. Mater. Interfaces 6(21):18502-18510 (2014).

10.1021/am506007z
26

Syverud, K., Pettersen, S. R., Draget, K., and Chinga-Carrasco, G., Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering, Cellulose 22(1):473-481 (2015).

10.1007/s10570-014-0470-5
27

Cuomo, F., Cofelice, M., and Lopez, F., Rheological characterization of hydrogels from alginate-based nanodispersion, Polymers 11(2):1-11 (2019).

10.3390/polym11020259
28

Rahmini, Juhn, S., Seong, H. A., and Shin, S. J., Impact of monovalent cations on the rheology of cellulose nanofibrils, J. of Korea TAPPI 52(2):12-22 (2020).

10.7584/JKTAPPI.2020.04.52.2.12
29

Rahmini, Juhn, S., Seong, H. A., and Shin, S. J., Impact of divalent cations on the rheology of cellulose nanofibrils, J. of Korea TAPPI 52(2):78-87 (2020).

10.7584/JKTAPPI.2020.04.52.2.78
30

Sim, K., Lee, J., Lee, H., and Youn, H. J. Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability, Cellulose 22:3689-3700 (2015).

10.1007/s10570-015-0784-y
31

Dong, H., Snyder, J. F., Williams, K. S., and Andzelm, J. W., Cation-induced hydrogels of cellulose nanofibrils with tunable moduli, Biomacromolecules 14(9):3338-3345 (2013).

10.1021/bm400993f
32

Masruchin, N., Park, B. D., Causin, V., and Um, I. C., Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties, Cellulose 22(3):1993-2010 (2015).

10.1007/s10570-015-0624-0
33

Moberg, T., Rigdahl, M., Stading, M., and Bragd, E. L., Extensional viscosity of microfibrillated cellulose suspensions, Carbohydr. Polym. 102: 409-412 (2014).

10.1016/j.carbpol.2013.11.041
34

Jowkarderis, L. Theo, G. M. and Ven, D. V., Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils, Cellulose 21:2511-2517 (2014).

10.1007/s10570-014-0292-5
35

Chau, M., Sriskandha, S. E., Pichugin, D., Thérien-Aubin, H., Nykypanchuk, D., Chauve, G., Méthot, M., Bouchard, J., Gang, O., and Kumacheva, E., Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals, Biomacromolecules 16(8): 2455-2462 (2015).

10.1021/acs.biomac.5b00701
36

Lasseuguette, E., Roux, D., and Nishiyama, Y., Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp, Cellulose 15(3):425-433 (2008).

10.1007/s10570-007-9184-2
37

Iotti, M., Gregersen, Ø. W., Moe, S., and Lenes, M., Rheological Studies of Microfibrillar Cellulose Water Dispersions, J. Polym. Environ. 19(1):137-145 (2011).

10.1007/s10924-010-0248-2
38

Butchosa, N. and Zhou, Q, Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose, Cellulose 21(6):4349-4358 (2014).

10.1007/s10570-014-0452-7
39

Serra, A., González, I., Oliver-Ortega, H., Tarrès, Q., Delgado-Aguilar, M., and Mutjè, P., Reducing the amount of catalyst in TEM-PO-oxidized cellulose nanofibers: Effect on properties and cost, Polymers 9(11):557 (2017).

10.3390/polym9110557
40

Lindström, T., Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties, Curr. Opin. Colloid Interface Sci. 29:68-75 (2017).

10.1016/j.cocis.2017.02.005
41

Benini, K. C. C. C., Pereira, P. H. F., Cioffi, M. O. H. and Voorwald, J. C., Effect of acid hydrolysis conditions on the degradation properties of cellulose from Imperata brasiliensis fibers, Procedia Eng. 200: 244-252 (2017).

10.1016/j.proeng.2017.07.035
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 52
  • No :5
  • Pages :5-14
  • Received Date : 2020-05-11
  • Revised Date : 2020-09-22
  • Accepted Date : 2020-09-24