美人蕉不同生长期生物量分配格局与重金属累积、分配特征

王涛, 段积德, 王锦霞, 刘俊, 胡劲松. 美人蕉不同生长期生物量分配格局与重金属累积、分配特征[J]. 环境化学, 2020, (4): 1031-1038. doi: 10.7524/j.issn.0254-6108.2019070807
引用本文: 王涛, 段积德, 王锦霞, 刘俊, 胡劲松. 美人蕉不同生长期生物量分配格局与重金属累积、分配特征[J]. 环境化学, 2020, (4): 1031-1038. doi: 10.7524/j.issn.0254-6108.2019070807
WANG Tao, DUAN Jide, WANG Jinxia, LIU Jun, HU Jinsong. Biomass allocation pattern of Canna indica L. at different growthstages and its accumulation and distribution characteristics of heavy metals[J]. Environmental Chemistry, 2020, (4): 1031-1038. doi: 10.7524/j.issn.0254-6108.2019070807
Citation: WANG Tao, DUAN Jide, WANG Jinxia, LIU Jun, HU Jinsong. Biomass allocation pattern of Canna indica L. at different growthstages and its accumulation and distribution characteristics of heavy metals[J]. Environmental Chemistry, 2020, (4): 1031-1038. doi: 10.7524/j.issn.0254-6108.2019070807

美人蕉不同生长期生物量分配格局与重金属累积、分配特征

    通讯作者: 刘俊, E-mail: nhuliujun@126.com
  • 基金项目:

    湖南省教育厅重点项目(15A168),湖南省自然基金(2018JJ2325,2016JJ2103),衡阳市科技局项目(2018KJ111,2016KF14)和南华大学大学生研究性学习和创新性实验计划(2018XJXZ203,2018XJXZ396,X2019170)资助.

Biomass allocation pattern of Canna indica L. at different growthstages and its accumulation and distribution characteristics of heavy metals

    Corresponding author: LIU Jun, nhuliujun@126.com
  • Fund Project: Supported by Scientific Research Fund of Hunan Provincial Education Department (15A168), Hunan Provincial Natural Science Foundation of China(2018JJ2325, 2016JJ2103),Project of Hengyang Science and Technology Bureau(2018KJ111,2016KF14) and Project of Undergraduate Research Learning and InnovativeExperimental of University of South China(2018XJXZ203,2018XJXZ396,X2019170).
  • 摘要: 为了探讨美人蕉不同生长期对土壤重金属的生态适应,通过盆栽试验探究了幼苗期、花蕾期、盛花期美人蕉植株的根系和地上部分的生物量及其累积重金属含量的特征与差异.结果表明,随美人蕉龄的增长,美人蕉整株生物量增长速度先快后慢,地上部分生长速度远高于根系,植株生物量分配格局逐渐向地上转移;美人蕉各生长期对As、Pb、Zn、Mg、Cd和Mn等重金属的富集能力各异,在幼苗期、花蕾期和盛花期对As、Pb、Zn、Mg的蓄积均为典型的根部积累型;对Cd和Mn的蓄积在幼苗期为根部积累型,在花蕾期和盛花期为地上积累型;美人蕉地上部分和根系累积的Cd、Pb、As含量分别高达11.096—25.692 mg·kg-1和13.503—20.923、9.206—24.57 mg·kg-1和51.126—161.783、0.914—1.447 mg·kg-1和1.228—7.254 mg·kg -1.美人蕉能修复复合重金属污染土壤.
  • 加载中
  • [1] BARTKOWIAK A, LEMANOWICZ J, HULISZ P. Ecological risk assessment of heavy metals in salt-affected soils in the Natura 2000 area (Ciechocinek, north-central Poland)[J]. Environmental Impact Assessment, 2017,24(35):27175-27187.
    [2] 谷阳光,高富代.我国省会城市土壤重金属含量分布与健康风险评价[J].环境化学,2017,36(1):62-71.

    GU Y G,GAO F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities,China[J].Environmental Chemistry,2017,36(1):62-71(in Chinese).

    [3] 刘俊,朱允华,胡劲松,等. 湘江中游江段沉积物重金属污染特征及生态风险评价[J]. 生态与农村环境学报,2017,33(2):135-141.

    LIUJ, ZHU Y H, HU J S, et al. Characteristics and potential ecological risk assessment of heavy metal pollution in the sediments of middle reaches of Xiangjiang River[J]. Journal of Ecology and Rural Environment, 2017,33(2):135-141(in Chinese).

    [4] 杨阳,李艳玲,王美娥,等.湖南攸县稻米镉(Cd)富集特征及原因解析[J].环境科学学报,2017,37(4):1502-1507.

    YANG Y, LIY L,WANG M E,et al.Enrichment characteristics of cadmium in rice and its influence factor in the Youxian prefecture,Hunan Province[J].Acta Scientiae Circumstantiae,2017,37(4):1502-1507(in Chinese).

    [5] 雷鸣,曾敏,王利红,等. 湖南市场和污染区稻米中As、Pb、Cd污染及其健康风险评价[J].环境科学学报,2010,30(11):2314-2320.

    LEIM,ZENGM,WANG L H,et al.Arsenic,leadand cadmium pollution in rice from Hunan markets and contaminated areas and their health riskassessment[J]. Acta Scientiae Circumstantiae, 2010,30(11):2314-2320(in Chinese).

    [6] 杨洋,黎红亮,陈志鹏,等.郴州尾矿区不同油菜品种对重金属吸收积累特性的比较[J]. 农业资源与环境学报,2015,32(4):370-376.

    YANG Y, LI H L, CHEN Z P, et al. Comparation of the uptake and accumulation of heavy metals by rape species grown in contaminated soil surrounding mining tails in Chenzhou, China[J]. Journal of Agricultural Resources and Environment, 2015, 32(4):370-376(in Chinese).

    [7] 黎红亮,杨洋,陈志鹏,等. 花生和油菜对重金属的积累及其成品油的安全性[J]. 环境工程学报,2015,9(5):2488-2494.

    LI H L, YANGY, CHEN Z P, et al. Accumulation of heavy metals by peanut and rapeseed and safety of their refined oil[J]. Chinese Journal of Environmental Engineering, 2015, 9(5):2488-2494(in Chinese).

    [8] SOUDEK P, PETROVA S, VANKOVA R, et al. Accumulation of heavy metals using Sorghum sp.[J]. Chemosphere, 2014, 104:15-24.
    [9] GHAVRI S V, SINGHR P. Growth, biomass production and remediation of copper contamination by Jatrophacurcas plant in industrial wasteland soil[J]. Environment Biology, 2012, 33:207-214.
    [10] MCGRATH SP, ZHAO FJ. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology, 2003, 14(3), 277-282.
    [11] MEERS E, VAN SS, ADRIAENSEN K, et al. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils:A field experiment[J]. Chemosphere, 2010, 78(1), 35-41.
    [12] ZHANG X, XIA H, LI Z, et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6), 2063-2066.
    [13] 冯宗炜,王效科,吴刚. 中国森林生态系统的生物量和生产力[M]. 北京:科学出版社,1999. FENG Z W, WANG X K, WU G. Biomass and productivity of forest ecosystems in China[M]. Beijing:Science Press,1999(in Chinese).
    [14] 邢磊, 薛海霞, 李清河, 等. 白刺幼苗生物量与氮含量在叶与全株间的尺度转换[J]. 北京林业大学学报, 2018,40(2):76-81.

    XINGL,XUE H X,LI Q H, et al. Scaling from leaf to whole plant in biomass and nitrogencontent of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University,2018,40(2):76-81(in Chinese).

    [15] 李志刚,李素丽,梅利民,等. 美人蕉(Canna indica Linn.)和芦苇(Phragmites australis L.)人工湿地对含铬生活污水的净化效果及植物的生理生态变化[J].农业环境科学学报,2011, 30 (2):358

    -365. LI Z G, LI S L, MEI L M, et al.Chromium purification effects on domestic wastewater and physiological changes of Canna indica Linn. and Phragmites australis L. in constructed wetlands[J].Journal of Agro-Environment Science,2011, 30(2):358-365(in Chinese).

    [16] 张呈祥,陈为峰.美人蕉对镉的胁迫反应及积累特性[J].植物生态学报,2012,36(7):690-696.

    ZHANGC X, CHENW F.Stress responses of Canna indica to Cd and its accumulation of Cd[J]. Chinese Journal of Plant Ecology,2012,36(7):690-696(in Chinese).

    [17] 周航,曾敏,刘俊,等. 湖南4个典型工矿区大豆种植土壤Pb Cd Zn污染调查与评价[J].农业环境科学学报,2011,30(3):476-481.

    ZHOUH, ZENGM, LIUJ, et al. Investigation and evaluation of Pb, Cd, Zn contamination in Soybean planting soils of 4 typical mine zones in Hunan Province, China[J]. Journal of Agro-Environment Science, 2011,30(3):476-481(in Chinese).

    [18] 吴谨,陈孟鹏,李旭,等.聚丙烯酸钾对矿区先锋植物重金属富集能力的影响[J].环境化学,2017,36(3):549-556.

    WU J,CHEN M P,LI X,et al.Effects of potassium polyacrylate on the enrichment of heavy metals by mining pioneer plants[J].Environmental Chemistry,2017,36(3):549-556(in Chinese).

    [19] 李良,夏富才,孙越,等.阔叶红松林下早春植物生物量分配[J].北京林业大学学报,2017,3(1):34-41.

    LIL, XIAF C, SUNY, et al.Biomass allocation of eight early-spring herbs in broadleaf-Pinuskoraiensis mixed forest[J]. Journal of Beijing Forestry University, 2017,39(1):34-42(in Chinese).

    [20] KERKHOFF A J,ENQUIS B J. Ecosystem allometry:The scaling of nutrient stocks and primary productivity across plant communities[J].Ecology Letters, 2006, 9:419-427.
    [21] VIOLLE C, NAVAS M L, VILE D, et al.Let the concept of trait be functional[J]. Oikos,2007,116(5):882-892.
    [22] WEINER J.Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004,6(4):207-215.
    [23] DEK H,HUBER H,STUEFER J F,et al.A modular concept of phenotypic plasticity in plants[J].New Phytologist, 2005,166(1):73-82.
    [24] FINEPV, MILLER Z J,MESONES I, et al.The growth-defense trade-off and habitat specialization by plants in Amazonianforests[J]. Ecology,2006,87(7):S150-S162.
    [25] 刘俊,廖柏寒,曾清如,等. 镉胁迫对豆科作物生理生态效应研究进展[J].生态毒理学报,2010,5(2):295-301.

    LIU J, LIAO B H, ZENG Q R, et al.Advances on physiological and ecological effects of cadmium onlegume crops[J]. Asian Journal of Ecotoxicology, 2010,5(2):295-301(in Chinese).

    [26] 李月芳,刘领,陈欣,等. 模拟铅胁迫下玉米不同基因型生长与铅积累及各器官间分配规律[J]. 农业环境科学学报,2010, 29(12):2260-2267.

    LI Y F, LIUL, CHENX, et al.Plant growth, lead uptake and partitioning of maize(Zea mays L.)under simulated mild/moderate leadpollution stress[J].Journal of Agro-Environment Science, 2010, 29(12):2260-2267(in Chinese).

    [27]
    [28] 王业社,刘可慧.美人蕉(Canna indica Linn)镉胁迫的抗氧化机理[J].生态学报,2009,29(5):2710-2715.

    WANG Y S, LIU K H. Stress responses and resistance mechanism of Canna indica Linn to cadmium[J].Acta Ecologica Sinica, 2009,29(5):2710-2715(in Chinese).

    [29] DOMENECH J, ORIHUELA R, MIR G, et al. The Cd(Ⅱ)-binding abilities of recombinant quercus suber metallothionein:Bridging the gap between phytochelatins and metallothioneins[J]. Journal of Biological Inorganic Chemistry, 2007, 12(6):867-82.
    [30] GONG J M,LEE D A,SCHROEDER J I. Long distance root to shoot transport of phytochelatins and cadmium in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2003,100(17):10118-10123.
    [31] 周文婷,叶龙,龚志伟.大花美人蕉根的化学成分研究[J].热带亚热带植物学报2018, 26(5):556-560.

    ZHOU W T, YE L, GONG W. Chemical constituents from roots of Canna generalis[J].Journal of Tropical and Subtropical Botany,2018, 26(5):556-560(in Chinese).

  • 加载中
计量
  • 文章访问数:  2156
  • HTML全文浏览数:  2156
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-08

美人蕉不同生长期生物量分配格局与重金属累积、分配特征

    通讯作者: 刘俊, E-mail: nhuliujun@126.com
  • 1. 南华大学衡阳医学院, 衡阳, 421001;
  • 2. 有色金属矿区耕地重金属污染生态阻抗技术研究衡阳市重点实验室, 衡阳, 421001;
  • 3. 生物毒理与生态修复衡阳市重点实验室, 衡阳, 421001;
  • 4. 生态健康与人类重要疾病防控湖南省高校重点实验室, 衡阳, 421001
基金项目:

湖南省教育厅重点项目(15A168),湖南省自然基金(2018JJ2325,2016JJ2103),衡阳市科技局项目(2018KJ111,2016KF14)和南华大学大学生研究性学习和创新性实验计划(2018XJXZ203,2018XJXZ396,X2019170)资助.

摘要: 为了探讨美人蕉不同生长期对土壤重金属的生态适应,通过盆栽试验探究了幼苗期、花蕾期、盛花期美人蕉植株的根系和地上部分的生物量及其累积重金属含量的特征与差异.结果表明,随美人蕉龄的增长,美人蕉整株生物量增长速度先快后慢,地上部分生长速度远高于根系,植株生物量分配格局逐渐向地上转移;美人蕉各生长期对As、Pb、Zn、Mg、Cd和Mn等重金属的富集能力各异,在幼苗期、花蕾期和盛花期对As、Pb、Zn、Mg的蓄积均为典型的根部积累型;对Cd和Mn的蓄积在幼苗期为根部积累型,在花蕾期和盛花期为地上积累型;美人蕉地上部分和根系累积的Cd、Pb、As含量分别高达11.096—25.692 mg·kg-1和13.503—20.923、9.206—24.57 mg·kg-1和51.126—161.783、0.914—1.447 mg·kg-1和1.228—7.254 mg·kg -1.美人蕉能修复复合重金属污染土壤.

English Abstract

参考文献 (31)

目录

/

返回文章
返回