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Abstract 
 
Shot peening is a commonly used surface treatment process that 
imparts compressive residual stresses into the surface of metal 
components.  Compressive residual stresses retard initiation and 
growth of fatigue cracks.  During the component loading history, 
the shot-peened residual stresses may change due to thermal 
exposure, creep, and cyclic loading.  In these instances, taking full 
credit for compressive residual stresses would result in a 
nonconservative life prediction.  This paper describes a 
methodical approach for characterizing and modeling residual 
stress relaxation under elevated temperature loading, near and 
above the monotonic yield strength of IN100.  The model 
incorporates the dominant creep deformation mechanism, 
coupling between the creep and plasticity models, and effects of 
prior plastic strain.  The initial room temperature residual stress 
and plastic strain profiles provide the initial conditions for 
relaxation predictions using the coupled creep-plasticity model.  
Model predictions correlate well with experimental results on 
shot-peened dogbone specimens subject to single cycle and creep 
loading conditions at elevated temperature.  The predictions 
accurately capture both the shape and magnitude of the retained 
residual stress profile. 
 

Introduction 
 
In addition to the metallurgical advancements in chemistry, 
melting, and processing techniques, surface treatments such as 
shot peening (SP), low plasticity burnishing (LPB) and laser 
shock peening (LSP) have been employed to enhance damage 
tolerance by imparting compressive surface residual stresses at 
fracture-critical locations [1,2].  Compressive residual stresses 
retard crack initiation and growth, resulting in improved fatigue 
performance.  Numerous studies [3-10] on steels, titanium and 
nickel-base superalloys have shown that residual stresses 
generated via surface treatment relax when subjected to elevated 
temperature exposure or mechanical loading.  A variety of 
sophisticated empirical models have been developed and shown to 
capture trends in residual stress relaxation [5-7,10].  However, 
material microstructure, hardening behavior, plastic strain, and the 
underlying physical deformation mechanisms responsible for 
stress relaxation are not incorporated into many of these models.  
The result is a relaxation model that must be recalibrated for each 
surface treatment process and associated control parameters. 
 
Surface treatment processes such as SP, LSP and LPB produce 
three important changes in the near surface layers of the material: 
(1) hardening of the material, i.e., raising the yield strength; (2) 
large biaxial compressive surface residual stresses constrained by 
small compensatory tensile stresses distributed through the bulk of 

the body, and (3) an unstable dislocation structure near the free 
surface.  The surface treatment deformation results in plastic 
strain, yield surface, and residual stress profiles that change as a 
function of depth from the surface.  Most residual stress relaxation 
models in the literature only account for item (2), the initial state 
of residual stress in the structure.  Unfortunately, shot peening 
produces a highly deformed and stressed dislocation structure that 
is easily perturbed by thermal exposure or mechanical loading.  
Items (1) and (3) must also be incorporated in the experiments and 
as initial conditions in the models so that residual stress relaxation 
of other surface treatment processes, such as LSP and LPB, can be 
included in a deformation mechanism based approach. 
 
Creep Deformation Mechanisms and Models 
 
Creep deformation mechanisms in metals may be grouped into a 
number of broad categories depending on the author [12,13].  
Under low stress and high temperature conditions bulk diffusion 
through the lattice (Nabarro-Herring Creep) dominates, while for 
low stress and moderate temperatures diffusion along grain 
boundaries (Coble Creep) becomes the dominant deformation 
mechanism.  At higher stresses and low to moderate temperatures, 
less than 0.3 Tm (Tm = melting temperature), deformation is 
controlled by dislocation glide.  For temperatures above 0.3 Tm, 
the mobility of vacancies allows dislocations to climb out of the 
current glide plane to one of less resistance, thereby increasing the 
creep rate.   Finally, for stresses that reach the theoretical or ideal 
strength of the crystal, approximately equal to G/30, the material 
becomes unstable and fractures. 
 
The primary variables associated with creep deformation and 
creep rate are stress, temperature and time.  Much of the early 
work characterizing creep behavior has been aimed at fitting 
empirical equations to a general form where it has been typically 
assumed that the functions for stress, temperature and time are 
separable into a product as 
 

)()()( 321 tFTFFc σε =   (1) 
 
This approach may be acceptable when stress, temperature and 
material properties do not change with time.  For variable stress 
and temperature loading conditions a rate formulation must be 
adopted.  The creep strain rate equation is often cast in either a 
time hardening, 
 

)()()( 321 tFTFFc σε =&   (2) 
 
or strain hardening formulation: 
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Both are state variable approaches that may be applied to complex 
thermomechanical loading histories.  The time hardening 
formulation is somewhat cumbersome to implement in that the 
origin in time must be reset for each stress increment.  The strain 
hardening approach has the additional advantage that time is not 
included as an independent variable in the model.  For these 
reasons, most creep analyses implement a strain hardening 
formulation. 
 
A major element missing from the above creep models is the 
evolution of material microstructure with time or deformation 
history.  It is almost always assumed that the microstructure and 
hence the material properties remain unchanged throughout the 
deformation history.  Aspects of the material microstructure such 
as grain size, dislocation structure, inclusions, vacancies, etc. all 
have an impact on the deformation rate.  Both the time hardening 
and strain hardening approaches are suitable if the creep rate is 
dominated by a single deformation mechanism.  If multiple 
deformation mechanisms are active, or the dominant mechanism 
changes with thermal and mechanical loading history, simple time 
and strain hardening approaches fail to capture the loading 
response.  Schoeck [12] presents a more general formulation for 
creep rate that accounts for multiple independent creep 
mechanisms in the form 
 

( )∑ −=
i

kT/st,T,U
ic

ie)st,T,(f σσε&  (4) 

 
where 
 fi  = creep rate function (i.e., creep mechanism), 
 Ui = activation energy for creep mechanism, 
 σ = applied stress, 
 T = temperature, 
 k = Boltzmann’s constant, 
 st = structure of the material. 
 
This formulation addresses the evolution of a changing 
microstructure as a contributing factor to the creep rate, but 
implies the deformation mechanisms are independent.  Numerous 
models have been developed for the dominant creep mechanisms 
such as glide and climb of dislocations, and diffusion through 
grains and along grain boundaries.  Nowick and Machlin [14] and 
Weertman [15] developed the early dislocation creep models to 
describe climb and glide deformation mechanisms which gave rise 
to many of the commonly used exponential and hyperbolic sine 
formulations for creep rate.  The interaction or competition 
between deformation mechanisms can become complex.  Initial 
approaches to represent material degradation under creep loading 
include the continuum damage mechanics (CDM) approaches of 
Kachanov [16] and Rabotnov [17] that incorporate a single 
damage parameter and associated evolution equation.  More 
recently, the simple damage parameters in the CDM approach 
have been replaced by specific degradation models representing 
mechanisms such as cavity nucleation and growth, subgrain 
coarsening, multiplication of mobile dislocations, and thermally 
and environmentally driven mechanisms [18-24]. 
 
A number of modeling approaches have been developed to 
account for the combined contributions of plasticity and creep 

[18-20,25-29].  The trend has been to incorporate plasticity and 
creep into a single unified inelastic model.  The unified models 
have evolved to include complex nonlinear hardening rules to 
capture the Bauschinger effect, and cyclic hardening or softening.  
Unfortunately, the microstructural deformation mechanisms 
behind creep and plastic deformation, which are fundamentally 
different, have been combined in this approach. 
 
Investigations of the effects of prior room temperature prestrain 
on creep have been performed in copper [33], nickel [32,34] and 
aluminum [11].  Parker and Wilshire [33] show that tensile 
prestrain of 5 to 12.5 percent change both the primary and 
secondary creep rates, and that the secondary creep rate decreases 
with increasing levels of prestrain.  The experiments were 
conducted at a temperature of 0.7 Tm, in which dislocation 
enhanced diffusion is the rate-controlling mechanism.  They also 
conclude that the primary deformation mechanism is independent 
of the level of prestrain.  Davies et al. [32] investigated elevated 
temperature compressive prestrain of two to eleven percent on 
creep in pure nickel.  In Davies’ study the elevated temperature 
compressive prestrain increases secondary creep rate by an 
amount which is independent of the level of prestrain.  Evans and 
Wilshire [11], using two aluminum alloys, demonstrated that in 
one material secondary creep rate increases with increasing levels 
of prestrain while in another material secondary creep rate 
decreases with increasing levels of prestrain, for identical 
temperatures but different stress ranges.  They reason that if the 
primary deformation mechanism is recovery or climb controlled, 
then increasing levels of prestrain would result in lower secondary 
creep rates.  If the primary deformation mechanism is glide 
controlled, then increasing levels of prestrain would result in 
higher secondary creep rates.  In all cases, prior prestrain does 
affect the subsequent creep rate.  The experiments indicate that 
the level of prestrain, the direction (tensile or compressive) and 
the dominant deformation mechanism all contribute to whether 
creep rate increases or decreases with increasing levels of 
prestrain. 
 
Relaxation of Shot Peened Residual Stresses 
 
Shot peening has been employed for decades to impart 
compressive residual surface stresses for retardation of crack 
initiation and crack growth.  Numerous studies have characterized 
the beneficial effects of compressive residual surface stresses on 
fatigue life for aluminum-, titanium- and nickel-base alloys [1-
2,5-6].  For applications that utilize aluminum and titanium alloys, 
subjected to moderate temperatures and stresses, residual stresses 
are assumed to be stable with repeated cyclic stress-controlled 
loading.  In contrast, nickel-base superalloys are typically selected 
for applications where temperatures may reach 80 percent of the 
melting temperature, and stresses approach or exceed the 
monotonic yield strength.  At elevated temperatures and high 
stress loading conditions, inelastic deformation will alter the 
original residual stress depth profile.  Further, changes to the 
microstructure resulting from shot peening, long term elevated 
temperature exposure, and deformation history may accelerate the 
relaxation rate of residual stresses.  Understanding the relaxation 
of residual stresses is necessary to improve the ability to predict 
service life of shot-peened components. 
 
Thermal relaxation studies on shot peened steels [7], titanium 
alloys [3] and nickel alloys [3-4,6,8-9] have demonstrated that 
relaxation of residual stresses may occur at relatively low 
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temperatures and over short durations.  Vöhringer and coworkers 
[7] recognized that in addition to temperature and exposure time, 
the state of the material microstructure is itself another parameter 
that affects relaxation rate of residual stresses.  Cao and 
colleagues [6] developed a thermal recovery model based on the 
decreasing half-width of x-ray diffraction peaks which they 
attributed to annihilation and reorganization of crystalline defects.  
The thermal recovery was modeled as a macroscopic recovery 
strain that was a function of time and temperature.  Prevéy [3,8] 
has characterized thermal relaxation behavior for a number of 
materials and surface treatment techniques and has concluded that 
the rate of relaxation is correlated to the degree of cold working.  
Prevéy [8] claims that laser shock peening (LSP) and low 
plasticity burnishing (LPB), which are termed low cold work 
surface treatment processes, are more resistant to thermal 
relaxation of residual stresses than conventional shot peening.  
Thermal relaxation measurements made on superalloy material 
extracted from retired turbine disks were fit with multi-linear 
regression analysis by Gabb et al. [4].  Analysis of this data 
indicated that residual stress relaxation increases with 
temperature, exposure time, and level of initial cold work. 
 
Research into relaxation of residual stresses subject to mechanical 
loading has followed a much different path than thermal 
relaxation.  For thermal relaxation, temperature and exposure time 
are the primary parameters, while for mechanical loading the 
important factors are temperature, maximum and minimum 
applied stress, loading frequency, hold time, waveform shape and 
number of applied cycles.  Holzapfel et al. [7] describe residual 
stress relaxation consisting of three different stages: (1) relaxation 
due to specimen heating; (2) relaxation during the first cycle; and 
(3) relaxation with the logarithm of cycle count.  A similar 
approach by Cao et al. [6] describes thermomechanical relaxation 
as a two-stage process, in which the first stage is a shakedown of 
the initial residual stresses described by a monotonic stress strain 
law, and a second stage that is slower and is described by a cyclic 
softening related to the logarithm of number of the applied cycles. 
 
For complex spectrum loading conditions, a full constitutive 
model that integrates the solution forward in time is necessary to 
capture the state of residual stress at each cycle.  The most 
common formulation is the unified theory that incorporates 
plasticity, creep and recovery into a single viscoplastic model.  
Chaboche and Jung [10] and Ahmad et al. [5], using 
viscoplasticity models, predict residual stress relaxation in surface 
treated nickel-based superalloys at elevated temperature.  The 
fundamental flaw in the unified models is the assumption that 
plasticity, creep and recovery can be combined into a single 
formulation.  This approach contradicts experimental evidence 
that plasticity, creep and recovery are different deformation 
mechanisms and as such must be modeled separately, but possibly 
coupled. 
 
Prevéy [3,8] argues that the rate of residual stress relaxation and 
amount of relaxation is directly correlated to the level of cold 
work in surface-treated Ti-6Al-4V and IN718.  Prevéy’s 
measurements on IN718 made via x-ray diffraction line 
broadening show that at the surface, LSP and LPB have less than 
10 percent cold work, while shot peening cold work approaches 
40 percent for similar peak compressive residual stresses [8].  
However, shot peening cold work drops to nearly zero at a depth 
of 100 μm, while LPB becomes nearly zero at 1000 μm, and LSP 
exhibits approximately two to three percent cold work to a depth 

of over 1400 μm [8].  Clearly, the depth of plastic strain and not 
just the surface value contribute to the relaxation of residual 
stresses induced by surface treatments. 
 
Therefore, an approach that incorporates both the plastic strain 
(cold work) and the residual stress depth profiles is required to 
model relaxation of residual stresses for a multitude of surface 
treatment processes. 
 

Material Description of IN100 
 
IN100 is a powder metal (PM) nickel-base superalloy.  The 
nominal chemical composition of IN100 is 12.4Cr, 18.5Co, 4.7Ti, 
5.5Al, 3.2Mo, 0.8V, and 0.07C (wt %).  IN100 has a face-
centered cubic (FCC) structure with an average grain size of 
approximately 25μm.  In FCC structures such as this IN100 alloy 
there are aluminum (Al) atoms at the crystal corners and nickel 
(Ni) in the center of each face of the crystal which make up the 
Ni3Al structure.  The microstructure is composed of a continuous 
gamma (γ) matrix, and precipitate cubical gamma prime (γ’).  The 
cubical gamma prime is responsible for the excellent creep 
resistance of this alloy.  The gamma prime is strong and ductile 
which limits dislocation interaction and movement through the 
microstructure.  Microstructural studies comparing IN100 samples 
thermally exposed for 300 hours at 704°C with baseline samples 
(no exposure) reveal no evidence of grain growth, no gamma 
prime coarsening, and no new phases detected.  These same 
observations are also true for the heavily cold worked surface 
layers of the shot peened IN100 samples.  Additional details about 
the baseline microstructure are described in the literature [31]. 
 
The monotonic true stress – true stain response for IN100 at two 
temperatures, 23°C and 650°C, is shown in Figure 1.  Although 
the elastic modulus and ultimate tensile strength are dependent on 
temperature, the 0.2 percent yield strength and strain to failure are 
similar at 23°C and 650°C. 
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Figure 1. Monotonic true stress-true strain behavior for IN100 at 
23°C and 650°C. 
 

Creep with Prestrain Behavior in IN100 
 
Traditionally creep data for constant temperatures above 0.4 Tm 
and constant stress conditions are often shown in a plot similar to 
Figure 2.  The abscissa is time, which starts after the sample has 
reached the target stress.  The ordinates on the left and right sides 
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respectively, are total strain and strain rate.  The solid black line 
represents total strain and the dotted blue line strain rate.  The plot 
has three regions identified as primary, secondary, and tertiary.  
The creep rate in the primary region decreases until a minimum or 
steady-state strain rate is reached in the secondary region.  The 
secondary region is defined by a constant or minimum creep rate.  
Finally, the tertiary region is defined by increasing strain rate until 
failure.  What is not shown in this type of plot is the material 
response prior to reaching the desired creep stress.  In most 
materials the response is elastic, and only the initial loading strain 
is plotted on the graph as the first point.  However, nickel-base 
superalloys, and specifically IN100, have been developed to resist 
creep deformation at temperatures of 0.8 Tm, and stresses near 
and above the yield strength.  Under these conditions, plastic 
yielding during loading will affect the creep rate and deformation 
response.  Furthermore, if the material is subject to prior plastic 
strain at room temperature, elevated temperature yielding may be 
mitigated. 
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Figure 2. Total strain versus time curves for IN100 at 650°C. 
 
The effect of room temperature plastic prestrain on creep 
deformation behavior is shown in Figure 3 for an applied stress of 
1000 MPa and temperature of 650°C.  The zero percent prestrain 
case is the baseline that has been discussed in previous plots.  The 
one percent prestrain case exhibits delayed yielding resulting from 
an increase in the yield stress during prestrain loading.  The minus 
one percent prestrain loading exhibits a lower tensile yield 
resulting from the Bauschinger effect and supports the need to 
include a plasticity model with kinematic hardening.  Also, the 
increase in strain rate is more gradual for the compressive 
prestrain, which is consistent with the more gradual hardening 
curve described in the previous paragraphs on cyclic hardening.  
Only for the five percent prestrain test is yielding mitigated upon 
loading to 1000 MPa.  The data also show that any prestrain, 
tensile or compressive, results in a decrease in the minimum strain 
rate.  The open diamond symbols represent the initial loading 
strain, and clearly reflect the complex deformation that occurs 
prior to reaching the target stress for creep. 
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Figure 3. Strain rate versus total strain curves for IN100 under 
creep loading at σ=1000MPa & 650°C for different levels of 
room temperature plastic prestrain. 
 
Table 1. Minimum creep rate as a function of plastic prestrain 
level and applied stress for IN100 at 650°C. 

-1 0 1 5

1000 1.05E-06 2.37E-06 3.98E-07 1.13E-07

900 2.24E-07 4.03E-09 3.66E-08 3.38E-09

800 8.90E-09 4.60E-09 - 3.40E-09

Minimum Creep Rate (m/m/s)

Plastic Prestrain Level (%) @ 23°C8max     
(MPa)

 
 
 

Coupled Creep-Plasticity Model 
 
The constitutive model developed in this study is based on a rate-
independent plasticity model, and a strain hardening creep model 
that is coupled to the plasticity model through the plastic strain 
rate and yield surface size.  The plasticity model is based on the 
von Mises effective stress with a nonlinear mixed isotropic-
kinematic hardening rule as described by Dodds [30].  The creep 
model follows the physics-based modeling of dominant 
deformation mechanisms similar to the approaches of Ashby, 
Dyson, McLean and others [13,21-24].  Based on the SEM and 
TEM observations of the shot peened and thermally exposed 
microstructure, it has been argued that the microstructure remains 
stable over the range of temperatures and exposure times in this 
study [38].  Therefore a microstructural model dominated by a 
single deformation mechanism is sufficient to model residual 
stress relaxation behavior.  The elastic-plastic-creep model is cast 
in an implicit integration form suitable as a standard user material 
subroutine (UMAT) for implementation into ABAQUS/Standard.  
Details of the physical deformation mechanism, constitutive 
equations and solution procedure follow. 
 
Identification of the primary creep deformation mechanism is 
required before development of a model may begin.  One 
approach to determining the dominant mechanism is to fit the 
minimum creep rate versus stress data to a power law equation 
and evaluate the exponent of stress (n).  Bulk diffusion through 
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the grain (Nabarro-Herring Creep) and diffusion along grain 
boundaries (Coble Creep) may be characterized by minimum 
creep rates that are directly proportional to stress raised to an 
exponent n = 1.  Dislocation mechanisms such as climb and glide 
typically have a power law exponent that is higher and with a 
range of n = 3-5.  The creep rate data from this study exhibit an 
exponent of n ≈ 6, and therefore dislocation motion is the primary 
deformation mechanism for the range of conditions evaluated.  
Furthermore the applied stresses of 800-1000 MPa which are at 
and above yield, and moderate temperature of 650°C (0.58*Tm) 
suggest that dislocation glide is dominant over dislocation climb 
which is a lower-stress, higher-temperature mechanism.  
Therefore a creep model with dislocation glide as the dominant 
deformation mechanism is chosen for this alloy and range of 
operating conditions. 
 
Many of the viscoplastic models in the literature follow similar 
arguments about microstructural behavior in the development of 
the constitutive equation.  However, unified models [5,18-19,25-
29] that decompose the total strain rate into elastic and inelastic 
components as shown by 
 

in
ij

e
ijij eee &&& +=    (5) 

 
imply that plastic and creep deformation are one and the same 
mechanism.  Decomposing inelastic behavior into two rate terms 
enables independent creep and plasticity deformation mechanisms 
to be incorporated as shown by 
 

c
ij

p
ij

e
ijij eeee &&&& ++=   (6) 

 
This approach allows for creep and plasticity with distinct 
mechanisms.  In fact, they are not independent, but are coupled 
through a backstress tensor and dislocation mobility model which 
allows the creep strain rate to be dependent on plastic strain rate, 
plastic strain, and the yield surface size. 
 
The development of the creep model follows the microstructurally 
based deformation mechanism approach of Dyson, McLean, and 
colleagues [21-23].  The basic model is adapted to incorporate the 
effects of prior plastic strain and coupling to the plasticity model.  
The 1D effective creep strain rate relation, based on glide of 
dislocations as the dominant deformation mechanism, is defined 
such that it is identical to the axial component under uniaxial 
loading, 
 

( ) ⎟⎟
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where 

 cε&  = effective creep strain rate, 

 oε&  = creep strain rate parameter, 

 dmε  = effective mobile dislocation density, 
 σ  = effective stress, 

 κσ  = normalized stress parameter (nondimensional), 
 κ  = size of yield surface. 
 

The microstructural evolution equation for multiplication of 
mobile dislocations has been modified to incorporate the effect of 
plastic strain rate as follows: 
 

cpdm NM εεε &&& +=   (8) 
 
Parameters M and N are coefficients that determine the 
contributions of plastic strain rate and creep rate toward the 
increase in dislocation mobility, respectively.  In the absence of 
plastic strain, Equation 8 reduces to the damage rate equation 
described by McLean and Dyson [21]. 
The backstress rate ( ijα& ) is decomposed into components 

representing yield surface translation ( p
ijα& ), creep backstress 

( c
ijα& ), and creep recovery ( r

ijα& ), 

 
r
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c
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p
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The creep backstress evolution equation is adapted from the 
nonlinear kinematic hardening rule developed by Armstrong and 
Frederick [35] for plasticity, 
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c
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  (10) 

 
with parameters for strain hardening ( cC ) and strain softening 

( cγ ).  The recovery evolution model, 
 

pp
ij

r
ij C εαα && 1=    (11) 

 
is strictly a function of plastic material behavior and is analogous 
to the strain softening term in Equation 10.  Plastic hardening 
rules follow the approach in Dodds [30] in the form: 
 

( ) p
ij

p
ij H εβα && −= 1'

3
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  (12) 

 

( ) ppH εεβκ && '=   (13) 
 
This formulation incorporates the Bauschinger effect with a mixed 
nonlinear isotropic-kinematic model where β defines the fraction 
of isotropic hardening and H’ is the plastic modulus.  Pure 
isotropic hardening occurs when β = 1 and pure kinematic 
hardening when β = 0. 
 
As is typical for metals, it is assumed that hydrostatic stresses 
have negligible effect on yield behavior and that during plastic 
flow the material is incompressible.  Therefore all constitutive 
equations have been based on deviatoric forms of the stress and 
strain tensors as shown below. 
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The elastic relationship between stress and strain, shown below in 
deviatoric form, is the basis for integrating the stresses to the end 
of the time step.  
 

e
ijij eG2s && =    (15) 

 
Combining the elasticity equation with the additive strain rate, 
Equation 6, provides an equation for the dependent stresses in 
terms of the independent strain rates as, 
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ijijij eeeGs &&&& −−= 2   (16) 

 
We adopt Prandtl-Reuss flow equations for both plasticity and 

creep rate, identifying pλ&  and cλ&  as positive scalar quantities 

representing the different deformation histories, 
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The effective plastic strain rate, effective creep rate and von Mises 
effective stress are defined respectively as, 
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The nonlinear stress-strain equation that relates the effective 
plastic strain to the von Mises effective stress is best described by 
a simple empirical equation as shown by, 
 

( )np
o K εσσ +=   (22) 

 
where σo is the virgin yield strength, K is the strain hardening 
coefficient, and n is the strain hardening exponent. 
 
Integration of the solution forward in time starts by estimating the 
creep strain increment for the current material point based on the 
stress state and state variables at the beginning of the step.  The 
predicted creep strain increment is subtracted from the supplied 
total strain increment to produce an elastic-plastic strain 
increment.  An elastic-plastic solution follows to calculate an 
effective plastic strain increment and the stresses at the end of the 
time step, based on the predicted elastic-plastic strain increment.  
Then a corrected creep strain increment is calculated based on 
stresses calculated at the midpoint of the step.  The corrected 

creep strain increment is used to calculate an improved prediction 
for state variables at the end of the step.  The correction procedure 
is repeated until the difference between the predicted and 
corrected stresses at the end of the step reaches a specified 
tolerance limit.  If more than a specified number of corrections are 
needed to achieve the tolerance, a request to cut the time step is 
returned to ABAQUS.  The solution for the elastic-plastic portion 
of the model follows the work of Braisted and Brockman [36] on 
a rate-dependent implicit model for Ti-6Al-4V.  The solution was 
adapted to a rate-independent nonlinear isotropic-kinematic 
hardening model described by Dodds [30]. 
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Figure 4. Total strain rate versus total strain curves for IN100 
under creep loading at σ=1000MPa, 1% RT plastic prestrain, and 
at 650°C. 
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Figure 5. Total strain rate versus total strain curves for IN100 
under creep loading at σ=1000MPa, 5% RT plastic prestrain, and 
at 650°C. 
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Figure 6. Total strain rate versus total strain curves for IN100 
under creep loading at σ=800MPa, 0% RT plastic prestrain, and at 
650°C. 
 

Application of Coupled Model to Residual Stress Relaxation 
 
Shot Peened Specimen Geometry 
 
Characterization of the initial residual stress and plastic strain 
depth profiles are necessary for accurate prediction of the 
evolution of stresses and plastic strains under applied thermal and 
mechanical loading.  The accuracy of stress predictions depends 
on accuracy of the initial conditions, specifically residual stresses 
and plastic strains.  There are numerous variables that affect the 
residual stress and plastic strain depth profile.  Elastic and 
inelastic material properties of the material itself have a 
pronounced effect on the resulting residual stresses and plastic 
strains.  For example, machining and surface finishing processes, 
such as grinding and polishing, performed prior to shot peening 
all impart residual stresses into the component.  The shot peening 
process itself has many factors that contribute to the variability of 
imparted residual stresses, including shot size, hardness, coverage 
and angle, just to mention a few.  Figure 7 is a backscatter SEM 
micrograph of a polished cross section of IN100.  The left side of 
the image is the shot peened surface of the sample.  The left 50 
μm area shows a distinct change in microstructure resulting from 
the shot peening-induced deformation.  The right side shows the 
interior, with a typical representation of the microstructure and 
individual grains.  Superimposed over the microstructure are 
representative residual stress and percent cold work (plastic strain) 
depth profiles determined by x-ray diffraction (XRD). 
 
Identifying the steps involved in specimen machining, shot 
peening, mechanical testing, XRD and electropolishing, and 
analysis of the experiments is necessary to develop an integrated 
research plan.  After identifying limiting factors such as material 
availability, size of test matrix, and experimental and analytical 
requirements, a rectangular cross section, dogbone geometry as 
shown in the left image of Figure 8.  A large flat shot peened 
surface is desired to maximize the size of the irradiated region 
during XRD.  A cylindrical geometry of equal cross sectional area 
would provide a much smaller surface area for XRD 
measurement, add complexity in measuring stresses on curves 
surfaces, and make electropolishing and measuring uniform layer 
removal for depth profiles more difficult.  For the flat dogbone 
geometry an irradiated x-ray region of 3 x 5 mm with nominal 

grain size of 25 μm provides approximately 30,000 interrogated 
grains over which to determine an average residual stress.  A 
specimen width of 10 mm in the gage section provides a 3.5 mm 
border around the uniformly stressed region for residual stresses 
to decay to zero at the free surface.  A specimen thickness of two 
mm was selected based on guidance from the shot peening vendor 
and the capacity of the hydraulic grip hardware. 
 
Based on residual stress depth profiles on a similar superalloy, 
IN718 [3,8] and typical shot peening specifications for turbine 
engine components [1,2], an Almen intensity of 6A has been 
selected. 
 

 
Figure 7. Composite of baseline residual stress and cold work 
depth profiles overlaid on shot peened microstructure. 
 
Finite Element Model of Shot Peened Specimen Geometry 
 
The flat dogbone specimen geometry described in the previous 
section has been designed with both experimental and analytical 
considerations in mind.  The large flat surface of the dogbone 
sample provides a uniform state of stress in the plane of the 
sample over an area sufficient for averaging XRD measurements 
as a function of depth into the sample.  The steep gradient and 
shallow depth of the residual stress profile of shot peening 
requires an element thickness less than five microns at the surface 
to accurately represent the stress distribution.  Therefore a 
relatively simple and small geometry is desirable, given the 
required element size. 
 
Figure 8 is an illustration of the dogbone specimen, an enlarged 
view of the gage section, and a core of the gage section that 
represents the geometry of the finite element model.  The actual 
model exploits symmetry so only a half-thickness geometry is 
used for the analysis.  The dimensions of the finite element 
geometry are 100 μm x 100 μm x 1 mm.  Uniform displacement 
boundary conditions are enforced on the surface of the model.  
This is a reasonable assumption given that the tractions applied to 
the specimen grip section are far from the gage section.  Also, the 
shot-peened layer is a small fraction of the depth (approximately 
one tenth), and therefore will provide negligible resistance to the 
bulk of the thickness deforming uniformly. 
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Figure 8. Schematic of dogbone specimen, uniform gage section 
and finite element geometry. 
 
Prediction for retained residual stresses for a single mechanical 
loading cycle are shown in Figure 9.  The maximum applied stress 
of 900 MPa results in yielding during loading.  Three specimens, 
tested at these conditions, are averaged and shown as a solid line 
representing the mean response with error bars displaying the 
range of the XRD measurements for both the axial and transverse 
residual stress profiles.  The range in the XRD measurements is 
greatest in the region where the residual stress profile has the 
largest value of compressive residual stress.  This is expected 
since the errors in depth measurement, and stress correction for 
material removal, are greatest in the shallow depth region. 
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Figure 9. Prediction of retained residual stresses in shot-peened 
dogbone specimen from single load-unload cycle at 900 MPa and 
650°C in IN100. 
 
The prediction for the residual stress profiles, shown as the thick 
lines without symbols, capture the residual stress relaxation trend.  
Surprisingly, the data displays a small tensile surface residual 
stress.  It has been demonstrated in the literature [37] that gross 
plastic straining of the entire cross section can reverse the residual 
stress profile, such that tensile residual stresses occur on the 
surface with compression in the center. 
 

Prediction for retained residual stresses under sustained load 
(creep) loading, for 30 minutes, is shown in Figure 10.  The 
maximum applied stress of 900 MPa results in yielding during 
loading.  The prediction captures the surface residual stress and 
peak compressive stress.  The measured profile displays a sharp 
point for the peak compressive residual stress, which is possibly 
an artifact of the XRD data reduction, and hence is not captured in 
the prediction. 
 
For sustained loading of 10 hours, at the same applied maximum 
stress of 900 MPa, the retained residual stresses are less than that 
of the 30 minute profile as shown in Figure 11.  Again, the 
experimental data exhibits a sharp peak in the compressive 
residual profile. 
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Figure 10. Prediction of retained residual stresses in shot-peened 
dogbone specimen from a 30 minute sustained load at 900 MPa 
and 650°C in IN100. 
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Figure 11. Prediction of retained residual stresses in shot-peened 
dogbone specimen from a 10 hour sustained load at 900 MPa and 
650°C in IN100. 
 
Clearly sustained loading is more detrimental than the load-
unloading cycle to retained compressive residual stresses for 
applied stresses that develop plastic strain during loading.  
Furthermore, sustained loading continues to relax residual stresses 
with increasing creep time.  Although significant relaxation of 
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compressive residual stresses occurs during creep relative to that 
of the load-unload cycle, the surface residual stress remains 
compressive.  This is relatively surprising since analysis of the 
creep strain data for the 10 hour creep test revealed that the 
specimen was in tertiary creep and close to failure when the test 
was stopped. 
 

Conclusions 
 
A new coupled creep-plasticity model that incorporates plastic 
strain and yield surface state variables has been developed, and 
used successfully for predicting residual stress relaxation in shot-
peened IN100.  This model reflects the correct dominant 
deformation mechanism identified for relaxation of shot-peened 
residual stresses in this alloy and therefore provides the capability 
to model relaxation of other surface treatment processes such as 
LSP and LPB.  Creep and plasticity are identified and modeled as 
different deformation mechanisms, coupled through state 
variables representing the evolution of the microstructure during 
deformation.  This treatment is contrary to unified models that 
treat plasticity and creep as the same deformation mechanism 
grouped into a single rate equation.  The coupled creep-plasticity 
approach facilitates incorporation of other creep deformation 
mechanisms into the model without additional extensive 
experimental testing and calibration. 
 
Tensile and creep tests have been completed to characterize the 
baseline IN100 material at room and elevated temperature.  Creep 
tests with prior room temperature prestrain demonstrate the effect 
plastic strain has on primary and secondary creep rate behavior.  
The proposed model has been demonstrated to give accurate 
predictions for stress relaxation under complex loading histories. 
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