透過您的圖書館登入
IP:3.145.156.250
  • 學位論文

結合拓樸及形狀最佳化之輕航機模擬

Combined Topology with Shape Optimization on Light Aircraft Simulation

指導教授 : 陳步偉

摘要


隨著航空業至今的蓬勃發展,除了大型的運輸客機外,私用的小型輕型飛機也逐漸普及,安全性的要求就顯得特別重要。複合材料在航空界的應用逐漸取代了傳統的金屬材料,許多複合材料的飛行器為了使其安全性維持一定的標準會針對機體結構作改善,如何最佳化改善結構的研究也越來越常見。 本研究期望能將STOL CH 701輕航機結合外形的形狀最佳化及結構的拓樸最佳化,並討論其安全性及阻力的改變與效益。機身外形材料為鋁合金6061-T6,而機身結構的材料為碳纖維複合材料 T300/LTM45-EL,利用ANSYS Fluent及Abaqus來做阻力外形的形狀最佳化及結構拓樸改善的模擬分析。形狀最佳化以阻力最小化做為目標函數;而拓樸最佳化的部分則以在維持結構連續的條件下之最佳應變能為目標函數,並針對改善前後的機體進行比較分析。 本研究經過阻力分析及墜撞模擬後,得到最佳化後的機身外形阻力值下降0.9%。墜撞後之最佳化機身符合MIL-STD-1290A的15%安全規範,且最佳化後之機身重量較最佳化前減少8.2%,從最佳化後機身的應變能來看則比初始機身結構增加,吸收能量的效率比初始機身提升2.7%。

並列摘要


In recent years,the aviation industry develop to flourish,Beside Airliner private light sport aircraft have gradually become popular,and the requirement for safety is particularly important. The application of composite materials on the aircraft has gradually replaced traditional metal materials. Many composite material aircrafts are designed to improve the structure safety of the airframe,and research on structure optimization has become more and more common. This study is expected to optimize the shape and structure of the STOL CH701 and discuss the change and benefits of its safety and performance. The fuselage appearance material is aluminum alloy 6061-T6, and the structural material is carbon fiber composite material T300/LTM45-EL. The study used ANSYS and Abaqus to simulate and analyze the shape optimization of resistance profile and topology optimization of structure. The shape optimization takes the minimization of the resistance as the objective function, while the topology optimization is based on the best strain energy under the condition of maintaining the continuous structure. The result of this study is that optimum model and compare with original model, the resistance value of the fuselage after optimization was decreased by 0.9%. After the collision, the optimized fuselage complies with the 15% safety standard of MIL-STD-1290A, and the body weight is reduced by 8.2% compared with that before optimization. The strain energy of the optimized fuselage more than the initial fuselage structure, and the absorption rate of energy is 2.7% higher than the initial fuselage.

參考文獻


參考文獻
[1]行政院飛安委員會,https://www.asc.gov.tw/main_ch/docDetail.aspx?uid=212&pid=200&docid=128
[2]彭亮、李思譚、萬小朋,「民機機身结構適墜性數值研究」,機械科學與技術,2016年1月。
[3] Todd R. Hurley﹐and Jill M. Vandenburg﹐”Small Airplane Crashworthiness Design Guide” ﹐AGATE-WP3.4-034043-036﹐April 12﹐2002.
[4] Dennis F.Shanahan﹐M.D. ﹐M.P.H﹐”Basic Principles of Crashworthiness” ﹐

延伸閱讀