透過您的圖書館登入
IP:3.140.185.147
  • 學位論文

不同矩柱表面之極值風壓分佈及局部風載重設計

Investigation on extreme pressure distribution and associated local wind loads on rectangular prism models

指導教授 : 羅元隆

摘要


本研究為了探討不同矩柱表面之極值風壓分佈與風載重設計的問題,分別以高寬比(H⁄√BD)3、6搭配7種不同深寬比(D/B)矩形斷面模型當作研究對象,將14種矩形斷面模型各自放入風洞中進行表面風壓量測,採樣足夠的實驗筆數後將所得到之數據繪製成極值風壓係數的非超越機率分布(累積機率密度分布)。接著以Reverse-Weibull函數公式作為擬合非超越機率分布曲線,找出各模型上風壓孔以Reverse-Weibull函數所擬合出曲線之形狀參數與計算曲線之變異係數(擾動程度),再將擬合之結果繪成等高線圖可發現形狀參數之分布差異與風壓孔的位置及矩形斷面尺寸相關。另外,根據局部設計風載重理論得知,極值設計風速以及極值風壓係數的乘冪關係式所涉及的非超越機率分布曲線對局部設計風載重的影響進行探討,且與國外規範中常見以Cook-Mayne值進行比較,找出在不同非超越機率分布曲線下所算出的載重設計值。經過數據分析得知,形狀參數會受到風壓孔位置不同而有所差別,值的範圍約在0 ~ 0.5之間,形狀參數皆為正值代極值風壓係數有其上限值,且大部分模型在迎風面與背風面形狀參數值會較高,接著從研究結果來看我們只能得知形狀參數值的範圍,其分布趨勢則無一定規則。此外,非超越機率分布曲線呈現非高斯的特性與我國規範假設不同。一般來說,Cook and Mayne (1985)所建議的78%非超越機率設計百分比是以Gumbel分布曲線來假設,本研究也有以一個模型比較Reverse-Weibull函數與Gumbel函數所擬合出的非超越機率設計百分比,結果為Gumbel函數算出之非超越機率設計百分比會較保守。 最後若依照本研究結果並進行建議,可提出局部風載重的設計值應隨著不同極值分布曲線來調整,才能得到較合理之設計值。

並列摘要


This research intends to investigate the design wind loads of various rectangular cross-sectional high-rise buildings in terms of extreme pressure coefficients. By6 conducting wind pressure measurement tests in a well simulated turbulent boundary layer flow, 14 high-rise building models were individually processed a huge amount of records to formulate each extreme value distribution for each pressure tap over the surface. A Reverse-Weibull function was adopted to fit the shape parameter of each distribution and the coefficient of variation was calculated to indicate the fluctuation level of extreme values. From the contours of both parameters of 14 building models, it was concluded that the range of fitted shape parameters is from 0.0 to 0.5 and the coefficient of variation followed the tendency of turbulence intensity. Moreover, the optimal design pressure coefficients were found based on iterative calculation of target non-exceedance probability of 0.001 for structural classification III and then compared with the Cook and Mayne coefficients. It was generally found in these 14 building models, the suggested 78% by the Cook and Mayne coefficient is more conservative than the optimal coefficients and a reasonable re-distributed design fractile map for design is strongly recommend.

參考文獻


[26] 朱佳仁,林坦誼,楊智凱,劉明怡,(2016)“半圓柱形溫室風壓係數之實驗研究”,農業工程學報62卷3期,pp.63-73.
[1] N. J. Cook, J. R. Mayne, (1980)“A Refined Working Approach to the Assessment of Wind Loads for Equivalent Static Design”, Journal of Wind Engineering and Industrial Aerodynamic, Vol.6(1-2), pp.125-137.
[2] A. Kareem, (1990)“Measurements of Pressure and Force Fields on Building Models in Simulated Atmospheric Flows”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.36, pp.589-599.
[3] Y. Zhou, T. Kijewski, A. Kareem, (2003)“Aerodynamic Loads on Tall Buildings: Interactive Database”, Journal of Structural Engineering, Vol.129, pp.3.
[4] S. Liang, S. C. Liu, Q. S. Li, L. L. Zhang, M. Gu, (2002)“Mathematical Model of Across-wind Dynamic Loads on Rectangular Tall Buildings”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.90, pp.1757-1770.

被引用紀錄


曾育凡(2017)。干擾效應下的極值分佈特性〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00894

延伸閱讀