透過您的圖書館登入
IP:13.59.34.87
  • 學位論文

利用鍺和二氧化錫奈米異質介面形成的多功能檢測器:多頻光譜與氣體偵測器

Multi-capability detection by using Ge/SnO2 Nano-heterojunction : Broadband light and gas detection

指導教授 : 葉炳宏

摘要


近年來,在一維奈米尺度電子元件上有許多研究團隊利用歐姆接觸與蕭特基接觸方式,提升了元件的輸出能力與靈敏度及反應效率,但如何增加單一材料奈米元件的感測多樣性,是奈米元件發展的關鍵。   本研究利用兩種不同材料(鍺與二氧化錫奈米線),形成鍺與二氧化錫奈米異質接面元件。在光感測部分,由於兩種材料的能隙不同,在形成異質介面時,因為能帶連續關係,使得元件可感測在兩者間的吸收波段。同時藉由操作在順、逆偏壓下,使得元件對不同波段的光源有不同的感測能力。而在氣體感測方面,由於本實驗元件屬於奈米點接觸元件,所以介面的焦耳熱效應顯著,增加了氧氣與一氧化碳吸附與脫附能力,在藉由操作順、逆偏壓下,使得元件對不同氣體有不同感測能力。   本研究證明了鍺與二氧化錫奈米異質介面元件,藉由操作在順、逆偏壓下調控能帶的彎曲,可以提高對多波段光源和氣體檢測能力。

並列摘要


Recently, there are several articles discussed how using ohmic and schottky contact mechanism to form sensors and how to increase the sensitivity and efficiency. Most of them are focus on the single material detection; but there are few articles used one material to functionalize the other material for intensifying the detection ability. In this study, we used two different materials (Germanium and Tin dioxide nanowire) to fabricate Ge/SnO2 nano-heterojunction device (GSNHD) for light and gas detection. For light detection, the broadband light can be detected due to the heterojunction interface. That is because the band continue formed by the heterojunction formation. So the GSNHD can detect different wavelengths light by operating the device tuning voltage. In gas sensing, due to the device scale-down, the Joule heating effect can be enlarged to enhance the oxygen and carbon monoxide adsorption and desorption capability. Worth to mention, the sensing ability of GSNHD is different for different gas environments by tuning voltage. From above experiment, GSNHD shows high sensitivity for environment changing. The ability of broadband light and gas detection can be improved because the band engineering of GSNHD by tuning voltage. In this research work, the multi-capability ability can be proved by using GSNHD.

參考文獻


31. 傅惠君; 葉炳宏. 奈米接觸型蕭特基感測元件之分析與應用. 淡江大學, 新北市, 2012.
32. 王玟捷; 葉炳宏. 研究藉由增加奈米材料表面的氧空缺結構以大幅提升奈米線感測元件的感測能力. 淡江大學, 新北市, 2013.
46. 蔡政佑; 吳文偉. 單晶鍺奈米線合成及特性量測. 國立交通大學, 新竹市, 2011.
2. Qi, H.; Glaser, E. R.; Caldwell, J. D.; Prokes, S. M., Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts. Journal of Nanomaterials 2012, 2012, 7.
3. Hideki Masuda and Masahiro, S., Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask. Japanese Journal of Applied Physics 1996, 35, L126.

延伸閱讀