郯庐断裂带中南段地壳结构分段特征

何奕成, 范小平, 赵启光, 霍祝青, 杨从杰, 郑雷明, 钱浩, 郑拓. 2021. 郯庐断裂带中南段地壳结构分段特征. 地球物理学报, 64(9): 3164-3178, doi: 10.6038/cjg2021O0247
引用本文: 何奕成, 范小平, 赵启光, 霍祝青, 杨从杰, 郑雷明, 钱浩, 郑拓. 2021. 郯庐断裂带中南段地壳结构分段特征. 地球物理学报, 64(9): 3164-3178, doi: 10.6038/cjg2021O0247
HE YiCheng, FAN XiaoPing, ZHAO QiGuang, HUO ZhuQing, YANG CongJie, ZHENG LeiMing, QIAN Hao, ZHENG Tuo. 2021. Segmentation of crustal structure beneath the middle-south segment of Tan-Lu Fault Zone. Chinese Journal of Geophysics (in Chinese), 64(9): 3164-3178, doi: 10.6038/cjg2021O0247
Citation: HE YiCheng, FAN XiaoPing, ZHAO QiGuang, HUO ZhuQing, YANG CongJie, ZHENG LeiMing, QIAN Hao, ZHENG Tuo. 2021. Segmentation of crustal structure beneath the middle-south segment of Tan-Lu Fault Zone. Chinese Journal of Geophysics (in Chinese), 64(9): 3164-3178, doi: 10.6038/cjg2021O0247

郯庐断裂带中南段地壳结构分段特征

  • 基金项目:

    国家自然科学基金(41874051,42004078),江苏省高等学校自然科学基金资助项目(20KJB170006)镇江市活动断层探测与地震危险性项目(ZJZCFS-(2017)商字第0006号),《临沂市国际生态城地震断层探测与地震危险性评价》项目,地震联合基金重点项目(U1939209)共同资助

详细信息
    作者简介:

    何奕成, 男, 1991年生, 主要从事地震层析成像与地震波衰减相关的研究.E-mail: hyckevin@mail.ustc.edu.cn

    通讯作者: 范小平, 男, 1974年生, 博士, 研究员, 主要从事地震波散射和衰减研究.E-mail: nj_fxp@njtech.edu.cn
  • 中图分类号: P315

Segmentation of crustal structure beneath the middle-south segment of Tan-Lu Fault Zone

More Information
  • 本文采用双差地震层析成像方法对郯庐断裂带中南段地壳速度和泊松比结构进行了研究,获得了郯庐断裂带中南段中上地壳介质结构的分段特征.结果表明,郯庐断裂带中南段由南至北可以划分为三段,即庐江以南段、庐江至郯城段及郯城以北段,郯城以北段又可细分为郯城至五莲及五莲以北两个亚段.庐江以南段、郯城以北段地壳介质速度和泊松比呈现相对高值,庐江至郯城段地壳介质速度和泊松比呈现相对低值,郯城至五莲亚段地壳介质速度和泊松比都明显高于五莲以北亚段.各段的边界为地壳速度和泊松比的梯度带,区域性断裂构造、中强地震多沿此梯度带分布.地壳介质速度和泊松比梯度带往往与深部物质的运移有关,这可能是构造活动、地震孕育的动力来源.

  • 加载中
  • 图 1 

    研究区主要断裂、构造及台站、地震分布图

    Figure 1. 

    Geological setting and seismic stations, earthquakes used in the study area

    图 2 

    原始数据时距曲线

    Figure 2. 

    Travel-time curves of original data

    图 3 

    剔除异常数据后走时曲线

    Figure 3. 

    Travel-time curves with outliers rejected

    图 4 

    反演网格及沿郯庐断裂带剖面位置示意图

    Figure 4. 

    Inversion grids and the position of profile along the Tan-Lu fault zone

    图 5 

    利用L-curve选择最佳的正则化参数

    Figure 5. 

    Best regularization parameter was selected by L-curve method

    图 6 

    不同深度的P波棋盘格分辨率测试结果

    Figure 6. 

    The checkboard resolution test of VP at different depths

    图 7 

    不同深度的S波棋盘格分辨率测试结果

    Figure 7. 

    The checkboard resolution test of VS at different depths

    图 8 

    不同深度P波速度成像结果

    Figure 8. 

    P wave velocity at different depth slices

    图 9 

    不同深度S波速度成像结果

    Figure 9. 

    S wave velocity at different depth slices

    图 10 

    不同深度泊松比成像结果

    Figure 10. 

    Poison′s ratio at different depth slices

    图 11 

    沿郯庐断裂带的速度和泊松比剖面

    Figure 11. 

    Seismic velocity profile along the Tan-Lu fault zone

    表 1 

    P波初始速度模型

    Table 1. 

    Initial P wave velocity model

    深度/km -5 0 5 10 15 20 25 33.9 40 60
    VP/(km·s-1) 1.3 5.14 5.87 5.88 6.05 6.32 6.4 6.41 8.06 8.38
    下载: 导出CSV
  •  

    Bem T S, Yao H J, Luo S, et al. 2020. High-resolution 3-D crustal shear-wave velocity model reveals structural and seismicity segmentation of the central-southern Tanlu Fault zone, eastern China. Tectonophysics, 778: 228372, doi:10.1016/j.tecto.2020.228372.

     

    Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. Journal of Geophysical Research: Solid Earth, 111(B9): B09312, doi:10.1029/2005JB003974.

     

    Fan X P, He Y C, Wang J F, et al. 2017. The crust seismic scattering strength below the middle-south segment of Tancheng-Lujiang fault zone. Chinese Journal of Geophysics (in Chinese), 60(5): 1725-1734, doi:10.6038/cjg20170510.

     

    Gu Q P, Ding Z F, Kang Q Q, et al. 2020. Group velocity tomography of Rayleigh wave in the middle-southern segment of the Tan-Lu fault zone and adjacent regions using ambient seismic noise. Chinese Journal of Geophysics (in Chinese), 63(4): 1505-1522, doi:10.6038/cjg2020N0117.

     

    Hao T Y, Suh M, Liu J H, et al. 2004. Deep structure and boundary belt position between Sino-Korean and Yangtze blocks in Yellow Sea. Earth Science Frontiers (in Chinese), 11(3): 51-61. http://d.wanfangdata.com.cn/periodical/dxqy200403007

     

    Huang Y, Li Q H, Zhang Y S, et al. 2011. Crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang Fault Zone and adjacent areas. Chinese Journal of Geophysics (in Chinese), 54(10): 2549-2559, doi:10.3969/j.issn.0001-5733.2011.10.012.

     

    Lei J S, Xie F R, Lan C X, et al. 2008. Seismic images under the Beijing region inferred from P and PmP data. Physics of the Earth and Planetary Interiors, 168(3-4): 134-146, doi:10.1016/j.pepi.2008.06.005.

     

    Lei J S, Zhao D P, Xu X W, et al. 2020. P-wave upper-mantle tomography of the Tanlu fault zone in eastern China. Physics of the Earth and Planetary Interiors, 299: 106402, doi:10.1016/j.pepi.2019.106402.

     

    Li C, Yao H J, Yang Y, et al. 2020. 3-D shear wave velocity structure in the shallow crust of the Tanlu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications. Earth and Planetary Physics, 4(3): 317-328, doi:10.26464/epp2020026.

     

    Li C F, Chen B, Zhou Z Y. 2009. Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Science in China Series D: Earth Sciences, 52(7): 984-993, doi:10.1007/s11430-009-0096-x.

     

    Li D H, Ding Z F, Zhan Y, et al. 2021. Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China. Earth and Planetary Physics, 5(4): 348-361, doi:10.26464/epp2021038.

     

    Li H Y, Song X D, Lv Q T, et al. 2018. Seismic imaging of lithosphere structure and upper mantle deformation beneath east-central China and their tectonic implications. Journal of Geophysical Research: Solid Earth, 123(4): 2856-2870, doi:10.1002/2017JB014992.

     

    Li J L, Chao H T, Cui Z W, et al. 1994. Segmentation of active fault along the Tancheng-Lujiang fault zone and evaluation of strong earthquake risk. Seismology and Geology (in Chinese), 16(2): 121-126. http://search.cnki.net/down/default.aspx?filename=DZDZ402.003&dbcode=CJFD&year=1994&dflag=pdfdown

     

    Li Q H, Zhang Y S, Bao H Y, et al. 2014. Crust velocity structure inference of the epicenter of M81/2 earthquake at Tancheng, Shandong, China, in 1668. Earthquake Research in China (in Chinese), 30(1): 30-42. http://d.wanfangdata.com.cn/Periodical/zgdzyj-e201403005

     

    Li X B, Zhao Q G, Zhu F, et al. 2018. The study of 1D velocity model based on multi-phase joint inversion in Jiangsu province. Earthquake research in China (in Chinese), 34(2): 312-321. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD201802012.htm

     

    Paige C C, Saunders M A. 1982. Algorithm 583: LSQR: sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8(2): 195-209, doi:10.1145/355993.356000.

     

    Peng J, Huang J L, Liu Z K, et al. 2020. Constraints on S-wave velocity structures of the lithosphere in mainland China from broadband ambient noise tomography. Physics of the Earth and Planetary Interiors, 299: 106406, doi:10.1016/j.pepi.2019.106406.

     

    Shi W, Zhang Y Q, Dong S W. 2003. Quaternary activity and segmentation behavior of the middle portion of the Tan-Lu Fault zone. Acta Geoscientia Sinica (in Chinese), 24(1): 11-18. http://www.oalib.com/paper/1558215

     

    Spakman W, van der Lee S, van der Hilst R. 1993. Travel-time tomography of the European-Mediterranean mantle down to 1400 km, Physics of the Earth and Planetary Interiors, 79(1-2): 3-74, doi:10.1016/0031-9201(93)90142-V.

     

    Sun Y J, Huang Y, Jiang H L, et al. 2015. Tectonic stress field and segmention characteristics in the Shandong-Jiangsu-Anhui Segment of the Tancheng-Lujiang Fault zone. Earthquake (in Chinese), 35(3): 66-75. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN201503007.htm

     

    Tian F F, Lei J S, Xu X W. 2020. Teleseismic P-wave crustal tomography of the Weifang segment on the Tanlu fault zone: A case study based on short-period dense seismic array experiment. Physics of the Earth and Planetary Interiors, 306: 106521, doi:10.1016/j.pepi.2020.106521.

     

    Wang C Y, Wu Q J, Duan Y H, et al. 2017. Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China. Science China Earth Sciences, 60(5): 821-857, doi:10.1007/s11430-016-9009-1.

     

    Wang L S, Li C, Shi Y S, et al. 1995. Distributions of geotemperature and terrestrial heat flow density in lower Yangtze area. Chinese Journal of Geophysics (in Chinese), 38(4): 469-476. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX504.006.htm

     

    Wang X F, Li Z J, Chen B L, et al. 2000. On Tan-Lu Fault Zone (in Chinese). Beijing: Geological Publishing House, 1-40.

     

    Wang X N, Yu X W, Zhang W B. 2015. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan source area. Chinese Journal of Geophysics (in Chinese), 58(4): 1179-1193, doi:10.6038/cjg20150408.

     

    Wei Z G, Chu R S, Chen L, et al. 2020. Crustal structure in the middle-southern segments of the Tanlu Fault Zone and adjacent regions constrained by multifrequency receiver function and surface wave data. Physics of the Earth and Planetary Interiors, 301: 106470, doi:10.1016/j.pepi.2020.106470.

     

    Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45): 409-410, doi:10.1002/2013EO450001.

     

    Xiao Z, Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan plateau and adjacent regions derived from double difference tomography. Chinese Journal of Geophysics (in Chinese), 60(6): 2213-2225, doi:10.6038/cjg20170615.

     

    Xiong Z, Li Q H, Zhang Y S, et al. 2016. Segmentation of crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tanlu Fault zone and adjacent areas and its geological implications. Chinese Journal of Geophysics (in Chinese), 59(7): 2433-2443, doi:10.6038/cjg20160710.

     

    Xu J W, Zhu G, Lv P J, et al. 1995. Progress in studies on strike-slip chronology of the Tan-Lu fault zone. Geology of Anhui (in Chinese), 5(1): 1-12. http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ501.000.htm

     

    Yang C J, Li Q H, Wang J, et al. 2016. Medium inhomogeneity of mid-upper crust beneath the middle segment of Tancheng-Lujiang fault zone. Acta Seismological Sinica (in Chinese), 38(1): 29-40, doi:10.11939/jass.2016.01.003.

     

    Yin H, Zhu G, Wu X D, et al. 2020. Continental response to mid-Cretaceous global plate reorganization: Evidence from the Tan-Lu Fault Zone, eastern China. Gondwana Research, 86: 23-45, doi:10.1016/j.gr.2020.05.005.

     

    Yin W W, Lei J S, Du M F, et al. 2019. Uppermost-mantle Pn velocity and anisotropic tomography of the Tanlu fault zone and adjacent areas. Chinese Journal of Geophysics (in Chinese), 62(11): 4227-4238, doi:10.6038/cjg2019M0672.

     

    Zhang H J, Thurber C H. 2003. Double-difference tomography: The method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America, 93(5): 1875-1889, doi:10.1785/0120020190.

     

    Zhang H J, Thurber C H. 2006. Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163(2-3): 373-403, doi:10.1007/s00024-005-0021-y.

     

    Zhang J H, Zhao G Z, Xiao Q B, et al. 2010. Analysis of electric structure of the central Tan-Lu fault zone (Yi-Shu fault zone, 36°N) and seismogenic condition. Chinese Journal of Geophysics (in Chinese), 53(3): 605-611, doi:10.3969/j.issn.0001-5733.2010.03.014.

     

    Zhang P, Wang L S, Zhong K, et al. 2007. Research on the Segmentation of Tancheng-Lujiang Fault Zone. Geological Review (in Chinese), 53(5): 586-591. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200705001.htm

     

    Zhao Q G, Fan X P, He Y C, et al. 2021. Upper mantle velocity and its dynamic significance in the middle-southern segment of the Tan-Lu fault zone. Tectonophysics, 804: 228771, doi:10.1016/j.tecto.2021.228771.

     

    Zhao Z X, Liang S N, Santosh M, et al. 2020. Lithospheric extension associated with slab rollback: Insights from early Cretaceous magmatism in the southern segment of Tan-Lu fault zone, central-eastern China. Lithos, 362-363: 105487, doi:10.1016/j.lithos.2020.105487.

     

    Zheng Q D, Liu T B, Shen Y C. 2001. The Tanlu fault zone and gold ore metallogenesis in eastern China. International Geology Review, 43(2): 176-190, doi:10.1080/00206810109465006.

     

    Zhou C Y, Diao G L, Geng J, et al. 2010. Fault plane parameters of Tancheng M81/2 earthquake on the basis of present-day seismological data. Earthquake Science, 23(6): 567-576, doi:10.1007/s11589-010-0756-0.

     

    Zhu A L, Xu X W, Wang P, et al. 2018. The present activity of the central and southern segments of the Tancheng-Lujiang fault zone evidenced from relocated microseismicity and focal mechanisms. Earth Science Frontiers (in Chinese), 25(1): 218-226, doi:10.13745/j.esf.yx.2016-11-54.

     

    Zhu G, Wang D X, Liu G S, et al. 2001. Extensional activities along the Tan-Lu Fault zone and its geodynamic setting. Chinese Journal of Geology (in Chinese), 36(3): 269-278. http://en.cnki.com.cn/article_en/cjfdtotal-dzkx200103001.htm

     

    Zhu G, Liu G S, Niu M L, et al. 2002. Post-Eogene compressive activities on the Tan-Lu fault zone and their deep processes. Seismology and Geology (in Chinese), 24(2): 265-277. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200202014.htm

     

    Zhu G, Liu G S, Niu M L, et al. 2003. Transcurrent movement and genesis of the Tan-Lu fault zone. Regional Geology of China (in Chinese), 22(3): 200-207.

     

    Zhu G, Liu G S, Niu M L, et al. 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences, 98(1): 135-155, doi:10.1007/s00531-007-0225-8.

     

    Zhu G, Niu M L, Xie C L, et al. 2010. Sinistral to normal faulting along the Tan-Lu fault zone: evidence for geodynamic switching of the east China continental margin. The Journal of Geology, 118(3): 277-293, doi:10.1086/651540.

     

    Zhu G, Jiang D Z, Zhang B L, et al. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22(1): 86-103, doi:10.1016/j.gr.2011.08.005.

     

    范小平, 何奕成, 王俊菲等. 2017. 郯庐断裂带中南段地壳介质散射强度. 地球物理学报, 60(5): 1725-1734, doi:10.6038/cjg20170510. http://www.geophy.cn//CN/abstract/abstract13726.shtml

     

    顾勤平, 丁志峰, 康清清等. 2020. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像. 地球物理学报, 63(4): 1505-1522, doi:10.6038/cjg2020N0117. http://www.geophy.cn//CN/abstract/abstract15422.shtml

     

    郝天珧, Suh M, 刘建华等. 2004. 黄海深部结构与中朝一扬子块体结合带在海区位置的地球物理研究. 地学前缘, 11(3): 51-61. doi: 10.3321/j.issn:1005-2321.2004.03.007

     

    黄耘, 李清河, 张元生等. 2011. 郯庐断裂带鲁苏皖段及邻区地壳速度结构. 地球物理学报, 54(10): 2549-2559, doi:10.3969/j.issn.0001-5733.2011.10.012. http://www.geophy.cn//CN/abstract/abstract8195.shtml

     

    李春峰, 陈冰, 周祖翼. 2009. 中国东部及邻近海域磁异常数据所揭示的深部构造. 中国科学D辑: 地球科学, 39(12): 1770-1779. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200912013.htm

     

    李家灵, 晁洪太, 崔昭文等. 1994. 郯庐活断层的分段及其大震危险性分析. 地震地质, 16(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ402.003.htm

     

    李清河, 张元生, 鲍海英等. 2014. 据地壳速度结构推测1668年山东郯城81/2大地震震中. 中国地震, 30(1): 30-42. doi: 10.3969/j.issn.1001-4683.2014.01.004

     

    李细兵, 赵启光, 朱峰等. 2018. 基于多震相联合反演江苏地区一维速度模型研究. 中国地震, 34(2): 312-321. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201802012.htm

     

    施炜, 张岳桥, 董树文. 2003. 郯庐断裂带中段第四纪活动及其分段特征. 地球学报, 24(1): 11-18. doi: 10.3321/j.issn:1006-3021.2003.01.003

     

    孙业君, 黄耘, 江昊琳等. 2015. 郯庐断裂带鲁苏皖段构造应力场及分段特征研究. 地震, 35(3): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201503007.htm

     

    王良书, 李成, 施央申等. 1995. 下扬子区地温场和大地热流密度分布. 地球物理学报, 38(4): 469-476. doi: 10.3321/j.issn:0001-5733.1995.04.007 http://www.geophy.cn//CN/abstract/abstract4184.shtml

     

    王小凤, 李中坚, 陈柏林等. 2000. 郯庐断裂带. 北京: 地质出版社, 1-40.

     

    王小娜, 于湘伟, 章文波. 2015. 芦山震区地壳三维P波速度精细结构及地震重定位研究. 地球物理学报, 58(4): 1179-1193, doi:10.6038/cjg20150408. http://www.geophy.cn//CN/abstract/abstract11383.shtml

     

    肖卓, 高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构. 地球物理学报, 60(6): 2213-2225, doi:10.6038/cjg20170615. http://www.geophy.cn//CN/abstract/abstract13767.shtml

     

    熊振, 李清河, 张元生等. 2016. 郯庐断裂带鲁苏皖段地壳速度结构的分段特征及其地质意义. 地球物理学报, 59(7): 2433-2443, doi:10.6038/cjg20160710. http://www.geophy.cn//CN/abstract/abstract12968.shtml

     

    徐嘉炜, 朱光, 吕培基等. 1995. 郯庐断裂带平移年代学研究的进展. 安徽地质, 5(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ501.000.htm

     

    杨从杰, 李清河, 王俊等. 2016. 郯庐断裂带中段中上地壳介质非均匀性. 地震学报, 38(1): 29-40, doi:10.11939/jass.2016.01.003.

     

    殷伟伟, 雷建设, 杜沫霏等. 2019. 郯庐断裂带及其邻区上地幔顶部Pn波速度与各向异性层析成像. 地球物理学报, 62(11): 4227-4238, doi:10.6038/cjg2019M0672. http://www.geophy.cn//CN/abstract/abstract15225.shtml

     

    张继红, 赵国泽, 肖骑彬等. 2010. 郯庐断裂带中段(沂沭断裂带)电性结构研究与孕震环境. 地球物理学报, 53(3): 605-611, doi:10.3969/j.issn.0001-5733.2010.03.014. http://www.geophy.cn//CN/abstract/abstract1300.shtml

     

    张鹏, 王良书, 钟锴等. 2007. 郯庐断裂带的分段性研究. 地质论评, 53(5): 586-591. doi: 10.3321/j.issn:0371-5736.2007.05.002

     

    朱艾斓, 徐锡伟, 王鹏等. 2018. 以精定位背景地震活动与震源机制解研究郯庐断裂带中南段现今活动习性. 地学前缘, 25(1): 218-226, doi:10.13745/j.esf.yx.2016-11-54.

     

    朱光, 王道轩, 刘国生等. 2001. 郯庐断裂带的伸展活动及其动力学背景. 地质科学, 36(3): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103001.htm

     

    朱光, 刘国生, 牛漫兰等. 2002. 郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程. 地震地质, 24(2): 265-277. doi: 10.3969/j.issn.0253-4967.2002.02.015

     

    朱光, 刘国生, 牛漫兰等. 2003. 郯庐断裂带的平移运动与成因. 地质通报, 22(3): 200-207. doi: 10.3969/j.issn.1671-2552.2003.03.009

  • 加载中

(11)

(1)

计量
  • 文章访问数:  3089
  • PDF下载数:  685
  • 施引文献:  0
出版历程
收稿日期:  2020-07-02
修回日期:  2021-06-07
上线日期:  2021-09-10

目录