2011年日本MW9.0地震对沂沭断裂带及其两侧地区地壳运动的同震影响研究

朱成林, 甘卫军, 贾媛, 殷海涛, 肖根如, 李杰, 梁诗明, 张海平. 2020. 2011年日本MW9.0地震对沂沭断裂带及其两侧地区地壳运动的同震影响研究. 地球物理学报, 63(10): 3698-3711, doi: 10.6038/cjg2020N0456
引用本文: 朱成林, 甘卫军, 贾媛, 殷海涛, 肖根如, 李杰, 梁诗明, 张海平. 2020. 2011年日本MW9.0地震对沂沭断裂带及其两侧地区地壳运动的同震影响研究. 地球物理学报, 63(10): 3698-3711, doi: 10.6038/cjg2020N0456
ZHU ChengLin, GAN WeiJun, JIA Yuan, YIN HaiTao, XIAO GenRu, LI Jie, LIANG ShiMing, ZHANG HaiPing. 2020. Coseismic effects of the Tohoku MW9.0 earthquake in 2011 on the crustal movement of Yishu fault zone and its bilateral areas. Chinese Journal of Geophysics (in Chinese), 63(10): 3698-3711, doi: 10.6038/cjg2020N0456
Citation: ZHU ChengLin, GAN WeiJun, JIA Yuan, YIN HaiTao, XIAO GenRu, LI Jie, LIANG ShiMing, ZHANG HaiPing. 2020. Coseismic effects of the Tohoku MW9.0 earthquake in 2011 on the crustal movement of Yishu fault zone and its bilateral areas. Chinese Journal of Geophysics (in Chinese), 63(10): 3698-3711, doi: 10.6038/cjg2020N0456

2011年日本MW9.0地震对沂沭断裂带及其两侧地区地壳运动的同震影响研究

  • 基金项目:

    国家自然科学基金(41974105), 山东省重点研发计划(2018GSF120007), 山东省地震局科研基金(JJ1801Y), 国家自然科学基金(41861058)和江西省自然科学基金(20202BABL204070)联合资助

详细信息
    作者简介:

    朱成林, 男, 1984年生, 江苏灌南人, 中国地震局地质研究所博士研究生, 山东省地震局高级工程师, 主要从事形变数据分析研究工作.E-mail:zhuchenglin1985@163.com

    通讯作者: 甘卫军, 男, 1964年生, 研究员, 主要从事GPS大地测量学与地壳形变研究.E-mail:wjgan@ies.ac.cn
  • 中图分类号: P315

Coseismic effects of the Tohoku MW9.0 earthquake in 2011 on the crustal movement of Yishu fault zone and its bilateral areas

More Information
  • 2011年日本MW9.0地震(简称日本地震)后沂沭断裂带及其两侧地区地震活动显著增强,研究日本地震对该地区地壳运动及地震潜势的影响十分必要.为此,本文通过112个连续GPS观测站获取了研究区高空间分辨率的日本地震同震形变场并得到如下认识:(1)8个定点地球物理观测的同震响应验证了本文同震形变场的可靠性;日本地震的东向拉张使研究区整体上处于张性同震应变状态,但存在局部挤压区域,其中莱州湾至海州湾的挤压条带穿过沂沭断裂带并对断裂带南北两段产生了不同的同震作用,对南段具有拉张作用,对北段产生挤压作用;(2)同震形变场在鲁东隆起和鲁西断块产生了显著的剪应变,地震b值显示上述区域的构造应力在日本地震后增强,因此同震形变场可能改变了这些区域的应力特征;(3)地震矩张量叠加分析显示,同震形变场短期内对鲁西断块、鲁东隆起区和沂沭断裂带南段累积了地震矩,可能有助于上述区域在日本地震以后的地震活动增强;日本地震对沂沭断裂带北段的地震矩具有释放作用,或许是该区域地震活动减弱的原因.

  • 加载中
  • 图 1 

    研究区构造及地震活动分布.图中黑色实线为断裂,YSF表示沂沭断裂带,F1至F5为沂沭断裂带组成断裂,LKF为聊城—兰考断裂带,PWF为蓬莱—威海断裂带;黄色虚线为新构造单元分界;粉色三角形为陆态网络站点;左上插图蓝色矩形框表示研究区域,红色五角星为日本地震震中,黄色实线为活动地块划分(张培震等,2003);右上图为2007至2016年研究区ML0以上地震月频次曲线

    Figure 1. 

    Tectonics setting and earthquake distribution in the study area. Black lines represent faults, where YSF represents Yishu fault zone which is made up of F1—F5, LKF represents Liaocheng-Lankao fault zone, PWF represents Penglai—Weihai fault zone; Yellow dotted lines represent boundary of tectonic units; Pink triangles represent CMONOC sites; Blue rectangle box in the upper left illustration gives position of the study area, red five-pointed star represents epicenter of the Tohoku MW9.0 earthquake, yellow full lines represent the division of active blocks (Zhang et al., 2003); Illustration at upper right is monthly seismic frequency above ML0 in the study area during 2007—2016

    图 2 

    永久同震位移提取方法(a)及应用实例(b)

    Figure 2. 

    Extraction method (a) and application examples (b) of permanent coseismic displacement

    图 3 

    同震位移及背景速度场.(a)绿色箭头为背景速度(1999—2009),蓝色箭头为日本地震同震位移;背景颜色为东向位移,黑色虚线为等值线;误差椭圆的置信区间为95%.(b)同震位移方向统计

    Figure 3. 

    Horizontal coseismic displacement field and background velocity field. (a) Background velocity is represented as green arrows and coseismic displacement represented as blue arrows; Background color represents eastward coseismic displacement, black dotted line represents contour line. The confidence interval of error ellipse is 95%; (b) Azimuth statistics of coseismic displacement

    图 4 

    研究区的应变(率)场.背景颜色表示面应变(率),交叉箭头为主应变(率)矢量.(a)日本地震前背景应变率场(1999—2009);(b)日本地震同震应变场

    Figure 4. 

    Strain (rate) field in the study area. Background color represents dilatation strain (rate) and crossed arrows represents principal strain (rate) vector. (a) Background strain rate field before the Tohoku MW9.0 earthquake; (b) Coseismic strain field caused by the MW9.0 earthquake

    图 5 

    研究区的应变(率)场误差估计.图例和图 4一致

    Figure 5. 

    Error estimation of strain (rate) field in the study area. The legends are consistent with these in Fig. 4

    图 6 

    研究区应变及井水位观测记录的日本地震同震响应.中间的GPS应变分布图同图 4b,定点地球物理观测用填色圆圈标于其上,黑色表示压性,白色表示张性,并用黑色虚线指向其观测曲线图,各观测信息见表 2

    Figure 6. 

    Coseismic response of the Tohoku MW9.0 earthquake recorded by strainmeters and well water level observations in the study area. The GPS strain field in the middle is same as Fig. 4b, on which fixed-point geophysical observations are marked as filled circles, black represents pressure and white represents tension. Black dotted lines point to the observation curves, and the information of each fixed-point geophysical observation is shown in Table 2

    图 7 

    日本地震对研究区产生的最大剪应变场.黑色粗虚线所围成的A、B、C、D区域为计算地震b值的区域

    Figure 7. 

    Maximum shear strain field in the study area caused by the Tohoku MW9.0 earthquake. A, B, C and D enclosed by thick dotted black lines are areas for calculating seismic b-value

    图 8 

    地震b值和地震矩释放时间曲线.4个子图分别表示图 7中A、B、C、D四个区域的计算结果,图中蓝色曲线表示b值及其误差棒,红色曲线为地震矩释放的常用对数,图中黑色虚线的时间范围为2011-03-11—2013-03-11

    Figure 8. 

    Scanning curves of seismic b-value and released seismic moment. The 4 subgraphs represent respectively the calculation results of regions of A, B, C and D, which are marked in Fig. 7. Blue curves in the subgraphs represent seismic b-value and its error bar, red curves represent common logarithm of released seismic moment, and the time range of black dotted line is 2011-03-11—2013-03-11

    图 9 

    研究区地震矩累积与释放.(a)日本地震之前的地震矩累积率(1999—2010);(b)日本地震同震时地震矩累积;(c)日本地震之前地震矩释放率(1996—2011);(d)日本地震之后地震矩释放率(2011—2016)

    Figure 9. 

    Seismic moment accumulation and release in the study area. (a) seismic moment accumulation rate before the Tohoku MW9.0 earthquake (1999—2011); (b) coseismic moment accumulation caused by the MW9.0 earthquake; (c) seismic moment release rate before the MW9.0 earthquake (1996—2011); (d) seismic moment release rate after the MW9.0 earthquake (2011—2016)

    图 10 

    日本地震前后研究区地震矩累积和释放状态的叠加分析. (a) n=1a时有效同震地震矩累积;(b) n=3a时有效同震地震矩累积;(c) n=50a时有效同震地震矩累积;(d)震后与震前地震矩的释放速率变化

    Figure 10. 

    Overlay analysis of seismic moment accumulation and release states in the study area before and after the Tohoku MW9.0 earthquake. (a) Effective coseismic moment accumulation when n=1a; (b) Effective coseismic moment accumulation when n=3a; (c) Effective coseismic moment accumulation when n=50a; (d) Change of seismic moment release rate after and before the MW9.0 earthquake

    表 1 

    本文所用GPS数据的相关信息

    Table 1. 

    Information of GPS data used in this paper

    观测资料 站数 时间跨度 观测方式 观测机构
    中国地壳运动观测网络连续观测站(CMONOC-Ⅰ CORS) 1 1998—2017 30 s采样率,连续观测 中国地震局、总参测绘局、中国科学院、国家测绘局
    中国大陆构造环境监测网络连续观测站(CMONOC-Ⅱ CORS) 7 2010—2012 30 s采样率,连续观测 中国地震局、总参测绘局、中国科学院、国家测绘局、中国气象局、教育部
    山东省卫星定位连续运行综合应用服务系统(SDCORS) 96 2010—2014 30 s采样率,连续观测 山东省国土测绘院、山东省气象局
    山东地壳运动GPS观测网(SDCMGPS) 8 2007—2011 30 s采样率,连续观测 山东省地震局
    中国地壳运动观测网络非连续观测站(CMONOC-Ⅰ Campaign) 88 1999—2011 30 s采样率,分别于1999、2001、2004、2007、2009、2011年进行了重复观测,每期每站至少连续观测3天 中国地震局、总参测绘局、国家测绘局
    下载: 导出CSV

    表 2 

    定点地球物理观测的同震响应,表中代码和图 6中的观测标识代码及观测曲线代码一致

    Table 2. 

    Coseismic response of fixed-point geophysical observations, codes in the table are consistent with these of fixed-point geophysical observations and their observation curves in Fig. 6

    代码 定点地球物理观测 观测曲线 测项位置GPS面应变属性 与GPS面应变的一致性
    同震阶变方向 张压属性
    (a) 荣成钻孔体应变1 向上 压性 压性
    (b) 烟台硐体应变东西分量 向下 张性 张性
    (c) 昌乐井静水位埋深2 向下(水位上升) 压性 压性
    (d) 周村井静水位埋深 向上(水位下降) 张性 张性
    (e) 聊城井静水位埋深 向下(水位上升) 压性 压性
    (f) 郯城钻孔体应变 向下 张性 张性
    (g) 莱阳钻孔体应变 向下 张性 张性
    (h) 青岛钻孔体应变 向下 张性 张性
    注:1应变观测曲线上升为压性;2静水位埋深为水面至地面的垂直距离.
    下载: 导出CSV
  •  

    Blewitt G. 2008. Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing:Ambizap. Journal of Geophysical Research, 113(B12):B12410, doi:10.1029/2008JB005736.

     

    Boehm J, Niell A, Tregoning P, et al. 2006. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(7):L07304, doi:10.1029/2005GL025546.

     

    Bora D K, Borah K, Mahanta R, et al. 2018. Seismic b-values and its correlation with seismic moment and bouguer gravity anomaly over Indo-Burma ranges of northeast India:Tectonic Implications. Tectonophysics, 728-729:130-141, doi:10.1016/j.tecto.2018.01.001.

     

    Chao H T, Li J L, Cui Z W. 1995. Tectonic conditions of strong earthquakes with M ≥ 6 in Shandong province and its adjacent seas. Journal of Seismological Research (in Chinese), 18(2):188-196. http://en.cnki.com.cn/article_en/cjfdtotal-dzyj502.010.htm

     

    Chao H T, Wang Q, Li J L, et al. 1997. Seismotectonic Map of Shandong Province, Neotectonics Map of Shandong Province and Directions. Jinan:Cartographic Publishing House of Shandong Province(in Chinese).

     

    Chen W T, Gan W J, Xiao G R, et al. 2012. The impact of 2011 Tohoku-Oki earthquake in Japan on crustal deformation of northeastern region in China. Seismology and Geology (in Chinese), 34(3):425-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201203004

     

    Du C P, Yin H T, Qu G Q, et al. 2019. Fine characteristics analysis of recent vertical deformation field in Shandong area. Journal of Geodesy and Geodynamics (in Chinese), 33(2):117-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201902002

     

    Gan W J, Prescott W H. 2001. Crustal deformation rates in the central and eastern U.S. inferred from GPS. Geophysical Research Letters, 28(19):3733-3736. doi: 10.1029/2001GL013266

     

    Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research, 112(B8):B08416, doi:10.1029/2005JB004120.

     

    Gutenberg B, Richter C F. 1941. Seismicity of the earth. Geological Society of America Special Papers, 34:1-126.

     

    Han Q H, Wang L C, Xu J, et al. 2015. A robust method to estimate the b-value of the magnitude-frequency distribution of earthquakes. Chaos, Solitons & Fractals, 81:103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=65de84bc685da3e622c47223d80dfb94

     

    Kostrov B V. 1974. Seismic moment and energy of earthquakes, and seismic flow of rock. Izvestiya Academy of Sciences of the USSR (Physics of Solid Earth), 1:23-40. http://ci.nii.ac.jp/naid/10006711945

     

    Li W Y, Wang X Y. 1996. Correlation analysis of earthquakes in North China and Japan sea Trench. Earthquake (in Chinese), 16(3):219-224. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN199603001.htm

     

    Li Y X, Zhang J H, Li Z, et al. 2006. The under thrust of Pacific plate to Eurasian plate and its effect on Chinese mainland. Acta Geodaetica et Cartographica Sinica (in Chinese), 35(2):99-105. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHXB200602001.htm

     

    Liu R F, Chen Y T, Bormann P, et al. 2006. Comparison between earthquake magnitudes determined by China seismograph network and US seismograph network (Ⅱ):Surface wave magnitude. Acta Seismologica Sinica, 19(1):1-7. doi: 10.1007/s11589-001-0001-y

     

    Liu Y B, Pei S P. 2017. Temporal and spatial variation of b-value before and after Wenchuan earthquake and its tectonic implication. Chinese Journal of Geophysics (in Chinese), 60(6):2104-2112, doi:10.6038/cjg20170607.

     

    Man H M. 2005. Differential activity within Yishu fault zone and its causes of formation. North China Earthquake Sciences (in Chinese), 23(3):13-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdzkx200503003

     

    Maurer J, Segall P, Bradley A M. 2017. Bounding the moment deficit rate on crustal faults using geodetic data:Methods. Journal of Geophysical Research:Solid Earth, 122(8):6811-6835, doi:10.1002/2017JB014300.

     

    Mogi K. 1967. Regional variations in magnitude-frequency relation of earthquakes. Bulletin of the Earthquake Research Institute University of Tokyo, 45(2):313-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=065bf030eef837cf4250430bb5a39db7

     

    Murru M, Console R, Falcone G, et al. 2007. Spatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005. Journal of Geophysical Research, 112(B12):B12303, doi:10.1029/2006JB004791.

     

    Nampally S, Padhy S, Dimri V P. 2018. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence. Tectonophysics, 722:154-162, doi:10.1016/j.tecto.2017.11.004.

     

    Nuannin P, Kulhánek O, Persson L. 2012. Variations of b-values preceding large earthquakes in the Andaman-Sumatra subduction zone. Journal of Asian Earth Sciences, 61:237-242, doi:10.1016/j.jseaes.2012.10.013.

     

    Qiu Z H, Shi Y L. 2004. Application of observed strain steps to the study of remote earthquake stress triggering. Acta Seismologica Sinica (in Chinese), 26(5):481-488. http://gji.oxfordjournals.org/external-ref?access_num=10.1007/s11589-004-0035-z&link_type=DOI

     

    Savage J C, Simpson R W. 1997. Surface strain accumulation and the seismic moment tensor. Bulletin of the Seismological Society of America, 87:1345-1353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17fe3986cd494f05e13578e0b07be6fe

     

    Savage J C, Gan W J, Svarc J L. 2001. Strain accumulation and rotation in the eastern California shear zone. Journal of Geophysical Research, 106(B10):21995-22007. doi: 10.1029/2000JB000127

     

    Schmid R, Steigenberger P, Gendt G, et al. 2007. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. Journal of Geodesy, 81(12):781-798. doi: 10.1007/s00190-007-0148-y

     

    Scholz C H. 1968. The frequency-magnitude relation of micro-fracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1):399-415. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=58/1/399

     

    Slejko D, Caporali A, Stirling M, et al. 2010. Occurrence probability of moderate to large earthquakes in Italy based on new geophysical methods. Journal of Seismology, 14(1):27-51. doi: 10.1007/s10950-009-9175-x

     

    Song M C. 2008. Tectonic framework and tectonic evolution of the Shandong province[Ph.D. thesis](in Chinese). Beijing: Chinese Academy of Geological Sciences.

     

    Stefan W, Benoit J P. 1996. Mapping the b-value anomaly at 100km depth in the Alaska and New Zealand Subduction Zones. Geophysical Research Letters, 23(13):1557-1560, doi:10.1029/96GL01233.

     

    Su D L, Fan J K, Wu S G, et al. 2016. 3D P wave velocity structures of crust and their relationship with earthquakes in the Shandong area. Chinese Journal of Geophysics (in Chinese), 59(4):1335-1349, doi:10.6038/cjg20160415.

     

    Urbancic T I, Trifu C I, Long J M, et al. 1992. Space-time correlations of b values with stress release. Pure and Applied Geophysics, 139(3):449-462. https://link.springer.com/article/10.1007%2FBF00879946

     

    Wang M, Li Q, Wang F, et al. 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System. Chinese Science Bulletin, 56(23):2419-2424, doi:10.1007/s11434-011-4588-7.

     

    Ward S N. 1998. On the consistency of earthquake moment rates, geological fault data, and space geodetic strain:The United States. Geophysical Journal International, 134(1):172-186. doi: 10.1046/j.1365-246x.1998.00556.x

     

    Wu Y Q, Jiang Z S, Yang G H, et al. 2011. Comparison of GPS strain rate computing methods and their reliability. Geophysical Journal International, 185(2):703-717, doi:10.1111/j.1365-246X.2011.04976.x.

     

    Yang S M, Nie Z S, Jia Z G, et al. 2011. Far-field coseismic surface displacement caused by the MW9.0 Tohoku earthquake. Geomatics and Information Science of Wuhan University (in Chinese), 36(11):1336-1339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201111018

     

    Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D:Earth Sciences, 46(2):13-24. http://link.springer.com/article/10.1360/03dz0002

     

    Zhang Y, Huang F Q. 2011. Mechanism of different coseismic water-level changes in wells with similar epicentral distances of intermediate field. Bulletin of the Seismological Society of America, 101(4):1531-1541. doi: 10.1785/0120100104

     

    Zheng J C, Jiang H K. 2007. Correlation analysis and causality test between Ludong-Huanghai block and south Japan. Acta Seismologica Sinica (in Chinese), 29(4):358-368. http://www.cnki.com.cn/Article/CJFDTotal-DZXY200704003.htm

     

    Zhou Z H, Huang F Q, Ma Y C. 2013. Coseismic changes of water level caused by the Mianxian-Zhangxian MS6.6 Earthquake.China Earthquake Engineering Journal (in Chinese), 35(3):529-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201303021

     

    Zhu C L, Gan W J, Li J, et al. 2018. Relative motion between the two blocks on either side of the Yishu fault zone after the 2011 Japan MW9.0 earthquake and its effect on seismic activity. Chinese Journal of Geophysics (in Chinese), 61(3):988-999, doi:10.6038/cjg2018K0687.

     

    Zumberge J F, Heflin M B, Jefferson D C, et al. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3):5005-5017. doi: 10.1029/96JB03860

     

    晁洪太, 李家灵, 崔昭文. 1995.山东及其沿海地区强震(M ≥ 6)发生的地质构造背景.地震研究, 18(2):188-196. http://www.cnki.com.cn/Article/CJFDTotal-DZYJ502.010.htm

     

    晁洪太, 王琦, 李家灵等. 1997. 《山东省地震构造图》、《山东省新构造图》说明书.济南:山东省地图出版社.

     

    陈为涛, 甘卫军, 肖根如等. 2012. 3·11日本大地震对中国东北部地区地壳形变态势的影响.地震地质, 34(3):425-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201203004

     

    杜存鹏, 殷海涛, 曲国庆等. 2019.山东地区近期垂直形变场精细特征分析.大地测量与地球动力学, 39(2):117-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201902002

     

    李文英, 王秀英. 1996.华北地区与日本海沟地震的相关性分析.地震, 16(3):219-224. doi: 10.1007/BF02029074

     

    李延兴, 张静华, 李智等. 2006.太平洋板块俯冲对中国大陆的影响.测绘学报, 35(2):99-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb200602002

     

    刘雁冰, 裴顺平. 2017.汶川地震前后b值的时空变化及构造意义.地球物理学报, 60(6):2104-2112, doi:10.6038/cjg20170607.

     

    满洪敏. 2005.沂沭断裂带内部的差异活动及其成因分析.华北地震科学, 23(3):13-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdzkx200503003

     

    邱泽华, 石耀霖. 2004.观测应变阶在地震应力触发研究中的应用.地震学报, 26(5):481-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen200405004

     

    宋明春. 2008.山东省大地构造格局和地质构造演化[博士论文].北京: 中国地质科学院.

     

    苏道磊, 范建柯, 吴时国等. 2016.山东地区地壳P波三维速度结构及其与地震活动的关系.地球物理学报, 59(4):1335-1349, doi:10.6038/cjg20160415.

     

    杨少敏, 聂兆生, 贾志革等. 2011. GPS解算的日本MW9.0级地震的远场同震地表位移.武汉大学学报·信息科学版, 36(11):1336-1339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201111018

     

    张培震, 邓起东, 张国民等. 2003.中国大陆的强震活动与活动地块.中国科学(D辑), 33(增刊):12-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd2003z1002

     

    郑建常, 蒋海昆. 2007.鲁东-黄海地块与日本南部地震活动相关性分析及因果关系检验.地震学报, 29(4):358-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen200704003

     

    周志华, 黄辅琼, 马玉川. 2013.中国大陆井水位观测网对甘肃岷县漳县6.6级地震同震响应特征分析.地震工程学报, 35(3):529-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201303021

     

    朱成林, 甘卫军, 李杰等. 2018.日本MW9.0地震后沂沭断裂带两侧块体相对运动及对地震活动的影响.地球物理学报, 61(3):988-999, doi:10.6038/cjg2018K0687.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  3451
  • PDF下载数:  476
  • 施引文献:  0
出版历程
收稿日期:  2020-01-02
修回日期:  2020-08-25
上线日期:  2020-10-05

目录