帕米尔东北缘晚新生代旋转运动新证据

周在征, 裴军令, 李建锋, 刘锋, 盛美, 赵越. 帕米尔东北缘晚新生代旋转运动新证据[J]. 地球物理学报, 2016, 59(2): 633-642, doi: 10.6038/cjg20160220
引用本文: 周在征, 裴军令, 李建锋, 刘锋, 盛美, 赵越. 帕米尔东北缘晚新生代旋转运动新证据[J]. 地球物理学报, 2016, 59(2): 633-642, doi: 10.6038/cjg20160220
ZHOU Zai-Zheng, PEI Jun-Ling, LI Jian-Feng, LIU Feng, SHENG Mei, ZHAO Yue. New evidence for rotation of Northeastern Pamir since Late Cenozoic[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(2): 633-642, doi: 10.6038/cjg20160220
Citation: ZHOU Zai-Zheng, PEI Jun-Ling, LI Jian-Feng, LIU Feng, SHENG Mei, ZHAO Yue. New evidence for rotation of Northeastern Pamir since Late Cenozoic[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(2): 633-642, doi: 10.6038/cjg20160220

帕米尔东北缘晚新生代旋转运动新证据

详细信息
    作者简介:

    周在征,男,1989年生,硕士研究生,构造地质学专业.E-mail:zzzheng8023@gmail.com

    通讯作者: 裴军令,男,副研究员,主要从事区域构造地质与古地磁学研究工作.E-mail:peijunling@yeah.net
  • 中图分类号: P318;P542

New evidence for rotation of Northeastern Pamir since Late Cenozoic

More Information
  • 为进一步研究帕米尔东北缘晚新生代演化特征,在塔里木盆地西部英吉沙背斜上新世地层中采集了11个采点共111块古地磁样品.对样品进行系统热退磁测定,揭示了一组高温特征剩磁分量,获得了采样剖面的上新世古地磁极.特征剩磁方向为:Dg=342.4°,Ig= 59.2°,κg=32.3,α95=8.6°; Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相对应的古地磁极位置为:79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.这一高温分量通过了倒转检验,代表了研究区上新世时期的原生特征剩磁.通过对英吉沙背斜周缘断裂及形成的大地构造背景分析,结合其地貌特征、GPS数据,认为英吉沙背斜在开始形成至今经历了明显的逆时针构造旋转,该旋转同晚新生代以来帕米尔东北缘喀什凹陷发生刚性构造旋转运动有着密切的关系.
  • 加载中
  • [1]

    Besse J, Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research:Solid Earth (1978-2012), 107(B11):EPM 6-1-EPM 6-31.

    [2]

    Bosboom R, Dupont-Nivet G, Huang W T, et al. 2014. Oligocene clockwise rotations along the eastern Pamir:Tectonic and paleogeographic implications. Tectonics, 33(2):53-66.

    [3]

    Chen H L, Zhang F F, Cheng X G, et al. 2010. The deformation features and basin-range coupling structure in the northeastern Pamir tectonic belt. Chinese Journal of Geology (in Chinese), 45(1):102-112.

    [4]

    Chen H L, Chen S Q, Lin X B. 2014. A review of the Cenozoic Tectonic evolution of Pamir syntax. Advances in Earth Science (in Chinese), 29(8):890-902.

    [5]

    Chen J, Yin J H, Qu G S, et al. 2000. Timing, lower boundary, genesis, and deformation of Xiyu formation around the western margins of the Tarim basin. Seismology and Geology (in Chinese), 22(S1):104-116.

    [6]

    Chen J, Burbank D W, Scharer K M, et al. 2002. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan:rates of Pleistocene folding and thrusting. Earth and Planetary Science Letters, 195(1-2):113-130.

    [7]

    Chen J, Li T, Li W Q, et al. 2011. Late Cenozoic and present tectonic deformation in the pamir salient, northwestern China. Seismology and Geology (in Chinese), 33(2):241-259.

    [8]

    Chen Y, Cogné J P, Courtillot V. 1992. New Cretaceous paleomagnetic poles from the Tarim Basin, northwestern China. Earth and Planetary Science Letters, 114(1):17-38.

    [9]

    Cheng X G, Huang Z B, Chen H L, et al. 2012. Fault characteristics and division of tectonic units of the thrust belt in the front of the West Kunlun Mountains. Acta Petrologica Sinica (in Chinese), 28(8):2591-2601.

    [10]

    Cogné J P. 2003. PaleoMac:a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochemistry, Geophysics, Geosystems, 4(1),doi:10.1029/2001GC000227.

    [11]

    Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122(1-2):145-161.

    [12]

    Dupont-Nivet G, Guo Z, Butler R F, et al. 2002. Discordant paleomagnetic direction in Miocene rocks from the central Tarim Basin:evidence for local deformation and inclination shallowing. Earth and Planetary Science Letters, 199(3-4):473-482.

    [13]

    Enkin R. 1994. A computer program package for analysis and presentation of paleomagnetic data. Sidney:Pacific Geoscience Centre, Geological Survey of Canada, 16.

    [14]

    Fisher R. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 217(1130):295-305.

    [15]

    Fu B H, Ninomiya Y, Guo J M. 2010. Slip partitioning in the northeast Pamir-Tian Shan convergence zone. Tectonophysics, 483(3-4):344-364.

    [16]

    Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research:Solid Earth (1978-2012), 112(B8):B08416.

    [17]

    Gilder S, Zhao X X, Coe R, et al. 1996. Paleomagnetism and tectonics of the southern Tarim basin, northwestern China. Journal of Geophysical Research:Solid Earth (1978-2012), 101(B10):22015-22031.

    [18]

    He J K, Lu S J, Wang W M. 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions. Tectonophysics, 584:257-266.

    [19]

    Hu J Z, Tan Y J, Zhang P, et al. 2008. Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim basin. Earth Science Frontiers (in Chinese), 15(2):222-231.

    [20]

    Hu W S, Chen Y S, Xiao A C, et al. 1997. Structural features of major fault zones in the southwest depression in Tarim basin and their control on oil accumulation. Xinjiang Petroleum Geology (in Chinese), 18(3):201-207.

    [21]

    Huang B C, Piper J D A, Zhu R X. 2009. Paleomagnetic constraints on neotectonic deformation in the Kashi depression of the western Tarim Basin, NW China. International Journal of Earth Sciences, 98(6):1469-1488.

    [22]

    Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int., 62(3):699-718.

    [23]

    Lei J S, Zhou H L, Zhao P D, et al. 2002. 3-D velocity structure of p-wave in the crust and upper-mantle beneath pamir and adjacent region. Chinese J. Geophys. (in Chinese), 45(6):802-811.

    [24]

    Li K. 2014. Late Cenozoic tectonic and sedimentary evolution of the NE Pamir [Ph. D. thesis] (in Chinese). Hangzhou:University of Zhejiang.

    [25]

    Li J H, Cai Z Z, Luo C S, et al. 2007. The structural transfer at the southern end of talas-ferghana fault and its regional tectonic response in the Cenozoic. Acta Geologica Sinica (in Chinese), 81(1):23-31.

    [26]

    Li Z Y, Ding L, Lippert P C, et al. 2013. Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir plateau from the Western Kunlun Shan foreland. Tectonophysics, 603:257-271.

    [27]

    Liu S, Wang X, Wu X Q, et al. 2004. Growth strata and the deformation time of the late Cenozoic along front belts of Pamir-western Kunlun-southwest Tianshan in China. Acta Petrolei Sinica (in Chinese), 25(5):24-28.

    [28]

    Luo J H, Zhou X Y, Qiu B, et al. 2004. Controls of talas-ferghana fault on Kashi sag, Northwestern Tarim Basin. Xinjiang Petroleum Geology (in Chinese), 25(6):584-587.

    [29]

    Pei J L, Sun Z M, Li H B, et al. 2008. Paleocurrent direction of the Late Cenozoic sedimentary sequence of the Tibetan Plateau northwestern margin constrained by AMS and its tectonic implications. Acta Petrologica Sinica (in Chinese), 24(7):1613-1620.

    [30]

    Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision:An experimental approach. Journal of Geophysical Research:Solid Earth (1978-2012), 93(B12):15085-15117.

    [31]

    Qu G S, Li Y G, Li Y F, et al. 2005. Tectonic segmentation and its origin of southwestern Tarim foreland basin. Science in China (Series D) (in Chinese), 35(3):193-202.

    [32]

    Rumelhart P E, Yin A, Cowgill E, et al. 1999. Cenozoic vertical-axis rotation of the Altyn Tagh fault system. Geology, 27(9):819-822.

    [33]

    Sobel E R, Schoenbohm L M, Chen J, et al. 2011. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim:Implications for Pamir orogenesis. Earth and Planetary Science Letters, 304(3-4):369-378.

    [34]

    Sobel E R, Chen J, Schoenbohm L M, et al. 2013. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth and Planetary Science Letters, 363:204-218.

    [35]

    Sun Z M, Li H B, Pei J L, et al. 2013. Paleomagnetic study of Cenozoic sediments from western Kunlun-Pamir and its tectonic implications. Acta Petrologica Sinica (in Chinese), 29(9):3183-3191.

    [36]

    Tang M S, Zheng Y, Ge C, et al. 2014. Study on crustal structure in the northeastern Pamir region by P receiver functions. Chinese J. Geophys. ( in Chinese), 57(10):3176-3188, doi:10.6038/cjg20141007.

    [37]

    Thomas J C, Chauvin A, Gapais D, et al. 1994. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia). Journal of Geophysical Research, 99(B8):15141-15160.

    [38]

    Thompson J A, Burbank D W, Li T, et al. 2015. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China. Tectonics, 34(3):510-534.

    [39]

    Wang B Q, Huang Z B, Ma P L, et al. 2009. Establishment of division standard, evidence and principle of structural units in Tarim Basin. Geotectonica et Metallogenia (in Chinese), 33(1):86-93.

    [40]

    Wei H H, Meng Q R, Ding L, et al. 2013. Tertiary evolution of the western Tarim basin, northwest China:A tectono-sedimentary response to northward indentation of the Pamir salient. Tectonics, 32(3):558-575.

    [41]

    Xiao A C, Chen Y S, Hu W S, et al. 1995. Structural type of southwest depression, Tarim basin. Xinjiang Petroleum Geology (in Chinese), 16(2):102-108.

    [42]

    Xu Y, Liu J H, Liu F T, et al. 2006. Crustal velocity structure and seismic activity in the Tianshan-Pamir conjunctive zone. Chinese J. Geophys. (in Chinese), 49(2):469-476.

    [43]

    Yang W, Dupont-Nivet G, Jolivet M, et al. 2015. Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision. Tectonophysics, 644-645:122-137.

    [44]

    Yin A, Robinson A C, Manning C E. 2001. Oroclinal bending and slab-break-off causing coeval east-west extension and east-west contraction in the Pamir-Nanga Parbat syntaxis in the past 10 m.y.// AGU Fall Meeting Abstracts. AGU.

    [45]

    Zhang X K, Zhao J R, Zhang C K, et al. 2002. Crustal structure at the northeast side of the Pamirs. Chinese J. Geophys. (in Chinese), 45(5):665-671.

    [46]

    Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28(8):715-718.

    [47]

    Zheng H B, Chen H Z, Jin H L, et al. 2002. Magnetostratigraphic evidence for the Pliocene-early Pleistocene uplift of the northern Tibetan plateau. Marine Geology & Quaternary Geology (in Chinese), 22(2):57-62.

    [48]

    Zubovich A V, Wang X Q, Scherba Y G, et al. 2010. GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29(6),doi:10.1029/2010TC002772.

    [49]

    陈汉林, 张芬芬, 程晓敢等. 2010. 帕米尔东北缘地区构造变形特征与盆山结构. 地质科学, 45(1):102-112.

    [50]

    陈汉林, 陈沈强, 林秀斌. 2014. 帕米尔弧形构造带新生代构造演化研究进展. 地球科学进展, 29(8):890-902.

    [51]

    陈杰, 尹金辉, 曲国胜等. 2000. 塔里木盆地西缘西域组的底界、时代、成因与变形过程的初步研究. 地震地质, 22(S1):104-116.

    [52]

    陈杰, 李涛, 李文巧等. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2):241-259.

    [53]

    程晓敢, 黄智斌, 陈汉林等. 2012. 西昆仑山前冲断带断裂特征及构造单元划分. 岩石学报, 28(8):2591-2601.

    [54]

    胡建中, 谭应佳, 张平等. 2008. 塔里木盆地西南缘山前带逆冲推覆构造特征. 地学前缘, 15(2):222-231.

    [55]

    胡望水, 陈毓遂, 肖安成等. 1997. 塔西南坳陷主要断裂带构造特征及其控油作用. 新疆石油地质, 18(3):201-207.

    [56]

    雷建设, 周蕙兰, 赵大鹏. 2002. 帕米尔及邻区地壳上地幔P波三维速度结构的研究. 地球物理学报, 45(6):802-811.

    [57]

    李康. 2014. 帕米尔东北缘晚新生代构造与沉积演化[博士论文]. 杭州:浙江大学.

    [58]

    李江海, 蔡振忠, 罗春树等. 2007. 塔拉斯-费尔干纳断裂带南端构造转换及其新生代区域构造响应. 地质学报, 81(1):23-31.

    [59]

    刘胜, 汪新, 伍秀芳等. 2004. 塔西南山前晚新生代构造生长地层与变形时代. 石油学报, 25(5):24-28.

    [60]

    罗金海, 周新源, 邱斌等. 2004. 塔拉斯-费尔干纳断裂对喀什凹陷的控制作用. 新疆石油地质, 25(6):584-587.

    [61]

    裴军令, 孙知明, 李海兵等. 2008. 青藏高原西北缘晚新生代沉积岩古流向的磁化率各向异性确定及其构造意义. 岩石学报, 24(7):1613-1620.

    [62]

    曲国胜, 李亦纲, 李岩峰等. 2005. 塔里木盆地西南前陆构造分段及其成因. 中国科学(D辑:地球科学), 35(3):193-202.

    [63]

    孙知明, 李海兵, 裴军令等. 2013. 帕米尔-西昆仑地区新生代古地磁结果及其构造意义. 岩石学报, 29(9):3183-3191.

    [64]

    唐明帅, 郑勇, 葛粲等. 2014. 帕米尔东北缘地壳结构的P波接收函数研究. 地球物理学报, 57(10):3176-3188, doi:10.6038/cjg20141007.

    [65]

    王步清, 黄智斌, 马培领等. 2009. 塔里木盆地构造单元划分标准、依据和原则的建立. 大地构造与成矿学, 33(1):86-93.

    [66]

    肖安成, 陈毓遂, 胡望水等. 1995. 塔里木盆地西南坳陷的构造类型. 新疆石油地质, 16(2):102-108.

    [67]

    胥颐, 刘建华, 刘福田等. 2006. 天山-帕米尔结合带的地壳速度结构及地震活动研究. 地球物理学报, 49(2):469-476.

    [68]

    张先康, 赵金仁, 张成科等. 2002. 帕米尔东北侧地壳结构研究. 地球物理学报, 45(5):665-671.

    [69]

    郑洪波, 陈惠忠, 靳鹤龄等. 2002. 上新世-早更新世青藏高原北缘隆升的磁性地层学证据. 海洋地质与第四纪地质, 22(2):57-62.

  • 加载中
计量
  • 文章访问数:  1687
  • PDF下载数:  1853
  • 施引文献:  0
出版历程
收稿日期:  2015-05-04
修回日期:  2015-08-11
上线日期:  2016-02-05

目录