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1.  Introduction 
 
      International Atomic Time (TAI) and Coordinated Universal Time (UTC) are computed at the Bureau 
International des Poids et Mesures (BIPM) in Sevres, France, from clock data that are contributed by 
timing laboratories from around the world. At the end of 2013, 73 different timing laboratories were 
contributing to the TAI and UTC calculations. The measurement data were collected with several different 
time transfer techniques, each of which currently involves satellites [1]. 
      The most widely implemented of these time transfer techniques is the “all-in-view” method that utilizes 
Global Positioning System (GPS) satellites. The all-in-view method is a variation of the common-view 
method, which is a well-established way to compare clocks located at remote sites. For example, two 
clocks that are separated by a wide geographic distance can be compared to each other by first comparing 
them to a common-view signal (CVS) that is broadcast by an independent transmitter. Simultaneous time 
difference measurements are made at sites A and B. The measurement at site A produces the Clock A – 
CVS, and the measurement at site B produces Clock B – CVS. The desired result, Clock A – Clock B, is 
obtained by subtracting the two measurements from each other. The main difference between all-in-view 
and common-view is that the all-in-method does not require the CVS source to be identical at both sites. For 
example, in the case of GPS, sites A and B do not need to simultaneously receive signals from the same 
GPS satellites. Instead, a CVS can be obtained at each site by averaging data from the entire group of GPS 
satellites that are currently in view. This allows the all-in-view method to be utilized over very long 
baselines, when no single satellite is in “common-view” at both sites. 
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      The common-view time transfer technique has been implemented with a number of different types of 
terrestrial radio and network signals, and was described in the literature [2] long before the first GPS 
satellite was launched in 1978. However, since the origin of GPS, satellites have typically served as the 
CVS source, with the first common-view GPS measurement results being reported by the National Bureau 
of Standards (NBS), now known as the National Institute of Standards and Technology (NIST), in 1980 [3]. 
      Beginning in the early 1980s, NBS designed and built several types of common-view time transfer 
receivers [4, 5]. The NBS designs were then provided to U. S. industry [6] so that the receivers could be 
procured by other timing laboratories. The early “NBS Type” receivers were code based and single 
frequency, meaning that they received the C/A (coarse acquisition) code from the GPS L1 band frequency 
at 1575.42 MHz, and did not receive the L2 frequency, nor did they process carrier phase data. They were 
also single-channel, meaning that they could track only one GPS satellite at a time. Data from each satellite 
were collected for 13 minutes, a period long enough to ensure that each receiver participating in the 
common-view comparison had a complete and current copy of the latest satellite ephemeris, which requires 
12.5 minutes to download [7]. With some minor modifications, the NBS file format eventually became the 
standard used for the submission of time transfer data to the BIPM. Formally published in 1994 [8], the 
data format is known today as the Common GPS GLONASS Time Transfer Standard (CGGTTS). 
      In the 1990s, low-cost GPS receiver boards became commercially available as OEM (original 
equipment manufacturer) products. These receiver boards were also single frequency, but were multi-
channel and capable of tracking multiple satellites at once. Although the great majority of these products 
were designed for the positioning and navigation markets, a few products were optimized for timing 
applications. As a result, at least several national metrology institutes (NMIs) designed CGGTTS 
compatible receivers using eight-channel OEM boards, including the Borowiec Astrogeodymical 
Observatory (AOS) in Poland [9], the National Physical Laboratory (NPL) in the United Kingdom [10], 
and the National Institute of Metrology (NIM) in China [11]. Both the AOS and NPL receiver designs were 
once sold commercially, and are still used by a number of NMIs to contribute to UTC. In recent years, 
however, many timing laboratories have upgraded from single frequency to multi-frequency time transfer 
receivers. The newer receivers receive both the L1 and L2 GPS frequencies, and in some cases also receive 
signals from satellite constellations other than GPS. They also make it possible to utilize carrier phase 
techniques in addition to code techniques when processing their collected data. As a result, their combined 
measurement uncertainties are typically about a factor of two smaller than the uncertainties obtained with 
single frequency receivers. For these reasons, the single frequency models that were once sold 
commercially have been discontinued, and the models currently available to timing laboratories [12, 13] are 
typically from two to four times more expensive than their predecessors, costing as much as $40,000 USD. 
      The need remains, however, for a low-cost time transfer receiver with a price of less than $10,000 USD. 
This need is most apparent in regions such as Central and South America [14] and Africa [15], where new 
national timing laboratories are still being established, and where many existing laboratories have yet to 
contribute to UTC. These laboratories have limited financial resources. In addition, they typically maintain 
local time scales that are limited in both stability and accuracy. These laboratories do not currently need the 
highest level of time transfer performance. Their time scales can be easily characterized using a single-
frequency time transfer receiver, and any performance advantage gained from the use of a more elaborate 
or expensive receiver is likely to be indiscernible. 
      To address this need, this paper presents a low-cost time transfer receiver, called the NIST TAI-1. This 
receiver outputs data in the CGGTTS format for contributions to the calculation of UTC. The receiver 
utilizes a 12-channel L1 band OEM receiver board, a time interval counter, a single board computer and 
passive backplane, and software that runs under the Microsoft Windows1 operating system. Although the 
receiver is based on single-frequency GPS time transfer technology that does not represent the state of the 
art, the receiver has been engineered to be reliable and easy to use. It features a modern touch-screen 
interface, and automates the process of data transfer to the BIPM. The receiver’s automated data uploads 
are frequent enough to support contributions both to UTC, which is published monthly with measurements 
reported at five-day intervals; and to Rapid UTC (UTCr), which is published weekly with measurements 

                                                 
1 Company and product names are mentioned for technical completeness only. No endorsement by the National Institute of Standards 
and Technology (NIST) is either intended or implied. 
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reported at one-day intervals [1, 16]. At this writing (July 2014), the receiver is already contributing to 
UTC and UTCr at one NMI, and is expected to be operational at three more South American NMIs by the 
end of 2014. In addition, the receiver will soon be made available by NIST through its Standard Reference 
Materials (SRM) program as Standard Reference Instrument (SRI) number 6004. 
      Section 2 describes the receiver’s hardware design, Sec. 3 describes its software design, and Sec. 4 
describes the receiver’s operation. The method used to calibrate the receivers at NIST is described in Sec. 
5. Finally, Sec. 6 provides a brief summary. 
 
 
2.  Receiver Hardware Design 
 
      The NIST TAI-1 receiver (Fig. 1) was designed with commercially-available hardware and custom 
software (Sec. 3) written at NIST. The unit is housed in an industrial computer chassis that includes a 
264 mm diagonal (10.4 in) touch screen display with a resolution of 1024 × 768 pixels. The power supply 
can accept an AC input from 100 V to 240 V at either 50 or 60 Hz. The chassis includes an eight-slot 
passive backplane that interfaces to a single board computer, a serial interface board that mounts a 12-
channel OEM GPS receiver, and a time interval counter card. The computer has 2 gigabytes of memory, 
utilizes a solid state drive for storage, and runs the Microsoft Windows operating system. A network 
interface card allows the receiver to connect to the Internet, and six universal serial bus (USB) connectors 
allow a variety of peripherals to be connected, including storage devices and keyboards. The back panel of 
the unit (Fig. 2) includes BNC connectors for a 1 pulse per second (pps) timing signal and for a 5 or 
10 MHz sine wave that serves as the time interval counter time base. It also includes a TNC connector for 
the GPS antenna cable. 
 

 
 

Fig. 1. Front panel of NIST TAI-1 time transfer receiver. 
 

 
 

Fig. 2. Back panel of NIST TAI-1 time transfer receiver. 
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      The GPS receiver is a single frequency unit (L1 band) with 12 channels. To avoid product obsolescence 
and to make it possible to repair and support the receivers for a number of years, the software was designed 
to be flexible enough to work with several different OEM receiver boards. These boards have different 
architectures, but have similar command sets, based on the common Motorola binary protocol. Depending 
upon which receiver is used, the serial communication between the receiver and computer is conducted at 
either 9600 or 38400 baud. These receiver modules are widely used for timing applications [17, 18] and 
cost less than $100 USD, roughly 2 % of the cost of the receiver modules used in the multi-frequency time 
transfer units [12, 13]. 
      The TAI-1 uses a GPS antenna (Fig. 3) with a “pinwheel” design [19]. These antennas are lighter, 
smaller, and less expensive (less than $1 000 USD) than the “choke ring” antennas used by many timing 
laboratories, but have proven to be equally effective at reducing the multipath signal reflections that add 
uncertainty to GPS time transfer measurements [20]. Low loss antenna cable is supplied, so the signal loss 
at the L1 frequency is only slightly more than 5 dB per 30 m of cable. The antenna includes an amplifier 
that is powered by 5 V dc supplied by the receiver, and that provides about 30 dB of gain. The combination 
of the active antenna and the low loss cable allows the receiver to work with antenna cables of up to 150 m 
in length, so the antenna can be located far from the laboratory when necessary. 
      A time interval counter (TIC) is used to measure the time differences between the 1 pps signals 
generated by the GPS receiver and the user’s local UTC time scale, designated in BIPM parlance as 
UTC(k). The TIC is a circuit board connected to the computer’s bus via the passive backplane. As is the 
case with the OEM receiver boards, the software is flexible enough to be used with several different TICs, 
including two different NIST designs [21, 22] as well as a commercially available model. The single shot 
resolution of each of the various TICs that are compatible with the NIST TAI-1 receiver is less than 0.1 ns. 
A block diagram of the TAI-1 receiver is provided in Fig. 4. 
 

 
 

Fig. 3. GPS antenna mounted on rooftop location. 
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Fig. 4. Block diagram of NIST TAI-1 time transfer receiver. 
 
 
3.  Receiver Software Design 
 
      The basic function of the receiver software is to measure the time differences between the individual 
GPS satellites and the user’s local UTC time scale once per second, and to store the measurement results 
and other information collected from the GPS ephemeris in a CGGTTS compatible data file (Fig. 5). A new 
CGGTTS file is started every day. The CGGTTS file that is currently being generated is uploaded every 
hour to the BIPM. 
      The information stored in the CGGTTS file is in ASCII (American Standard Code for Information 
Interchange) format. The file header [8] contains information about the receiver and the laboratory, the 
Cartesian (X, Y, Z) coordinates of the antenna, and the delay values obtained from the receiver’s calibration 
(Sec. 5). It also contains a hexadecimal check sum (CKSUM) that can be used to verify the data integrity of 
the file header. 
      The individual satellite tracks are stored in the section of the file below the header. Each satellite track 
is stored as one line of ASCII characters. The following paragraphs describe how the receiver software 
obtains the relevant fields in the satellite track, in order to achieve full compatibility with CGGTTS 
standard [8]. The last two characters of each satellite track contain a hexadecimal checksum (CK) for data 
verification purposes. 
      The PRN field contains the pseudo random noise code that is used to identify every satellite being 
tracked. The GPS constellation has 32 slots, and thus PRN codes have possible values that range from 1 to 
32. Because a 12-channel GPS receiver board is used, up to 12 satellite tracks can be recorded during each 
data segment. The tracks recorded during each segment are sorted in the file according to their PRN 
numbers. 
      The CL, or class field, is a remnant from the days when receivers could track only one satellite at a 
time, and when the tracking schedules had to be manually entered. This field is no longer used, and is now 
always set to a hexadecimal value of FF. 
 

http://dx.doi.org/10.6028/jres.119.024
http://dx.doi.org/10.6028/jres.119.024


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.024 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 588 http://dx.doi.org/10.6028/jres.119.024 

 

 
Fig. 5. CGGTTS file created by NIST TAI-1 receiver. 

 
 
      The MJD field contains the Modified Julian Date, which is an integer day number obtained by 
computing the number of days that have elapsed between the current date and midnight on November 17, 
1858, which is the MJD’s point of origin. 
      The STTIME field lists the start time of a satellite track in UTC hours, minutes, and seconds. It is 
important to note that the measurement data in a CGGTTS file is organized by dividing the UTC day, 
which consists of 1440 minutes, into 90 data segments that are each 16 minutes in length. The GPS satellite 
orbits, however, are based on the sidereal day, which is approximately four minutes shorter than the UTC 
day. Thus, one of the 90 segments is too short to record a full satellite track, so only 89 full-length satellite 
tracks are recorded. Due to the difference in duration between the sidereal day and the UTC day, the 
software must determine the start time of the first satellite track of each day, so it can determine when to 
open and close the daily CGGTTS files. This was accomplished by establishing a start time for the first 
satellite track that is four minutes later than the previous day for three consecutive days, but on the fourth 

GGTTS GPS DATA FORMAT VERSION = 01 
REV DATE = 11/20/2013 
RCVR = NIST TAI-1 Time Transfer Receiver                                         
CH = 12 
IMS = 99999 
LAB = NIST 
X = -1288331.833 m 
Y = -4721664.612 m 
Z =  4078681.021 m 
FRAME = WGS84 
COMMENTS = Lab Code - 10002, UTC Code - 0010002 
COMMENTS =                                  
INT DLY = 25.5 
CAB DLY = 119.8 
REF DLY = 782.4 
REF = UTC(NIST) 
CKSUM = 07 
 
PRN CL  MJD  STTIME TRKL ELV AZTH   REFSV      SRSV     REFGPS    SRGPS  DSG IOE MDTR SMDT MDIO SMDI CK 
             hhmmss  s  .1dg .1dg    .1ns     .1ps/s     .1ns    .1ps/s .1ns     .1ns.1ps/s.1ns.1ps/s   
 02 FF 56842 001400  780 807 2428    -5049146    -47         201   -112   14  65   68   -1  137   -5 E9 
 04 FF 56842 001400  780 349 0500      -76293      0         113     50   31   4  116   22  195   19 81 
 05 FF 56842 001400  780 198 1696     3610220    -26         180   -218   23  88  198  -67  338  -67 33 
 06 FF 56842 001400  780 580 0460      -24402     37         132    -61   11  56   79    7  147    7 8A 
 10 FF 56842 001400  780 410 1160     1325608      2         279   -156   22  28  101   -8  194  -20 CF 
 12 FF 56842 001400  780 630 3045    -2159513    -43         157    -98   11  18   75   -4  145   -8 DE 
 17 FF 56842 001400  780 178 0850     1062788     45         174     42   31  95  217   59  281   27 E7 
 24 FF 56842 001400  780 230 2318      314713      1         101     -5   23  92  169   39  311   42 91 
 25 FF 56842 001400  780 256 3150     -247955      0         111    -72   23 108  153  -37  240  -30 E0 
 02 FF 56842 003000  780 850 3044    -5049183    -57         239    120   13  65   67    0  132   -3 C8 
 04 FF 56842 003000  780 281 0510      -76293      0         192    138   20   4  140   30  212   18 88 
 05 FF 56842 003000  780 264 1670     3610185    -21         237     75   28  88  149  -37  279  -54 0D 
 06 FF 56842 003000  780 510 0460      -24367     37         169    122   12  56   86    9  155   10 A0 
 10 FF 56842 003000  780 450 1065     1325608      2         274    120   21  28   94   -5  178  -14 B6 
 12 FF 56842 003000  780 689 2926    -2159548    -44         191     87   10  18   72   -2  139   -5 E3 
 17 FF 56842 003000  780 130 0900     1062823     42         220    171   32  95  296  110  308   30 D9 
 24 FF 56842 003000  780 176 2265      314713      1         126    170   26  92  218   67  355   51 BD 
 25 FF 56842 003000  780 320 3130     -247955      0         160    121   13 108  126  -23  214  -26 D6 
 02 FF 56842 004600  780 810 0081    -5049217    -51         189   -200   16  65   68    2  130   -2 D4 
 04 FF 56842 004600  780 220 0530      -76293      0         226    -21   23   4  177   46  229   17 97 
 05 FF 56842 004600  780 338 1640     3610150    -26         170   -198   24  88  120  -23  232  -42 0D 
 06 FF 56842 004600  780 440 0480      -24332     37         126   -184   13  56   95   12  165   12 BF 
 10 FF 56842 004600  780 470 0950     1325608      2         214   -196   13  32   91    0  167   -6 AB 
 12 FF 56842 004600  780 727 2706    -2159582    -43         146   -134   17  18   70    0  135   -2 E1 
 25 FF 56842 004600  780 389 3100     -247955      0         132   -133   21 108  107  -14  189  -21 FC 
 02 FF 56842 010200  780 748 0254    -5049253    -57         230    137    9  65   69    3  128    0 BA 
 04 FF 56842 010200  780 159 0560      -76293      0         178    419   40   4  244   97  245   16 AF 
 05 FF 56842 010200  780 410 1610     3610114    -36         204    101   14  88  102  -16  196  -35 E8 
 06 FF 56842 010200  780 377 0500      -24297     37         166    213   19  56  109   17  178   15 D2 
 10 FF 56842 010200  780 470 0835     1316071      1         219    146   13  32   91    1  162   -5 8D 
 12 FF 56842 010200  780 724 2417    -2155304      0         196    148   12  18   70    2  134    1 91 
 25 FF 56842 010200  780 450 3050     -247955      0         175    119   12 108   95  -10  171  -17 DA 
 29 FF 56842 010200  780 151 2929    -5440259    -61         149     50   15  80  247  -74  306  -42 0F 
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day establishing a start time that is 12 minutes earlier than the previous day. As a result, the repeating 
sequence for the start time of the first track, in UTC hours and minutes, is 00:02, 00:06, 00:10, 00:14, 
00:02, and so on. During the day, the start time for each satellite track is always 16 minutes after the start 
time of the previous track. 
      The TRKL field contains the duration of the satellite track in seconds. During each 16-minute data 
segment, only 13 minutes of data (780 s) are recorded from each satellite. Although it is no longer 
necessary to discard so much data with modern equipment, the standard notes that two minutes are needed 
“for locking onto the signal” and an additional minute is “helpful for data-processing and preparation for a 
new track” [8]. Thus, even though the receiver software continuously records time interval measurements 
during the day (with only a few seconds per track data segment used for data processing), the first two 
minutes of each 16-minute segment are discarded, the next 13 minutes of measurements are stored, and the 
last minute is also discarded. The software does not save the data unless more than 778 s of measurements 
were recorded. This means that the entire track will be discarded if more than one 1 pps measurement is 
missed. 
      The ELV and AZTH fields contain the elevation and azimuth angles of the satellite, respectively. Both 
values are stored in units of 0.1 degree. The standard indicates that they should be obtained from the “date 
corresponding to the midpoint of the track” [8], thus both values are obtained by averaging data collected 
during minute seven of the 13-minute track. 
      The REFSV field contains the satellite clock correction. The software obtains this information in one of 
two different ways, depending upon the OEM receiver board in use. If the receiver board allows access to 
the raw GPS ephemeris data, the value is computed with a second order polynomial and three coefficients 
obtained from subframe 1 of the ephemeris, af0, af1, and af2. The IOE field contains an 8-bit number (a 
decimal value from 0 to 255) obtained from the GPS navigation message that identifies the ephemeris data 
set used for the computation. If the receiver board does not allow access to the raw ephemeris data, a less 
accurate clock correction is computed with a first order polynomial using time parameters obtained from 
the GPS almanac. These parameters, af0 and af1, have less resolution and are updated less often than the 
time parameters in the ephemeris [23]. However, the use of the almanac data suffices, because the clock 
correction values are utilized only for verification purposes, and the actual time measurement data used by 
the BIPM for its TAI and UTC computations is contained in the REFGPS field. 
      The REFGPS field contains the time difference between the reference, which is the user’s local UTC 
time scale, and the time broadcast by the GPS satellite (identified by its PRN code). The value is recorded 
in units of 0.1 ns. It is obtained by collecting 52 non-overlapping data sets, each containing 15 time 
difference measurements (52 × 15 = 780). A least squares quadratic curve fit is applied to each data set, and 
the value obtained from the midpoint of the set (second eight) is obtained, reducing each 15-second data set 
to a single value. The resulting 52 data points are stored in an array and a least squares linear curve fit is 
applied. The final REFGPS value is obtained by using the midpoint of the least squares line, and then 
applying corrections for the receiver calibration (Sec. 5) and for ionospheric and tropospheric delays 
(discussed in the next paragraph). The DSG field contains the root mean square (RMS) of the linear fit 
residuals, expressed in units of 0.1 ns. These values provide an indication of the stability of the satellite 
tracks. As shown in the DSG column in Fig. 5, the receiver produces satellite tracks that are stable to within 
a few nanoseconds or less. 
      The ionospheric and tropospheric corrections that have been applied to the REFGPS value are listed in 
the MDIO and MDTR fields, respectively. Both corrections are modelled and based on estimates rather than 
measurements, hence the “MD” listed in their acronyms. They are also both processed using the method 
described in the previous paragraph (quadratic fit applied to 15-second data sets, linear fit applied to 
remaining 52 points), in accordance with the standard [8]. 
      The model used by the receiver software to estimate the ionospheric delay was developed by Klobuchar 
[24, 25] and is commonly applied by nearly all single-frequency GPS receivers. Details of the algorithm are 
listed in [23, 24]. It utilizes the latitude, longitude, elevation angle, and azimuth as its inputs, in addition to 
eight coefficients obtained from the almanac broadcast by the satellites. The four “alpha” values, 𝛼𝑛, are 
the coefficients for a cubic equation that represents the amplitude of the vertical delay. The four “beta” 
values, 𝛽𝑛, are the coefficients of a cubic equation that represents the period of the model. 
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      At any given time of day, satellites at low elevation angles generally require a larger ionospheric delay 
correction than those at higher elevation angles. However, the magnitude of the correction is much larger 
during the daytime hours for satellites of all elevation angles than it is during the nighttime, when 
ionospheric delay is less of a problem. The graph in Fig. 6 shows the modelled ionospheric correction for 
each satellite track in a CGGTTS file collected in Boulder, Colorado on July 4, 2014 (MJD 56842). The 
shaded area indicates the period between sunset and sunrise when the corrections are the smallest. The blue 
markers indicate satellite tracks where the elevation angle was between 10º and 20º (the receiver was 
configured to block the reception of satellites at elevation angles below 10º). The red markers indicate 
satellite tracks where the elevation angle was above 20º. 
 

 
 

Fig. 6. Graph of the modelled ionospheric delay correction for all satellites received in Boulder, Colorado over a 24-hour period. 
 
 
      The modelled estimate does not, of course, work as well as an ionospheric delay measurement, but it is 
expected to remove at least 50 % of the ionospheric delay [24]. Dual-frequency GPS receivers (L1 and L2 
band) have the distinct advantage of being able to measure, rather than model, the ionospheric delay. When 
the BIPM processes CGGTTS data from a single-frequency receiver such as the TAI-1, the MDIO 
correction is removed from REFGPS, and a measured ionospheric delay correction (MSIO) is substituted, 
reducing the uncertainty of the REFGPS estimate. 
      GPS does not broadcast any information related to a tropospheric delay correction, but numerous 
models exist [26]. The TAI-1 software utilizes the tropospheric delay model originally published as a North 
Atlantic Treaty Organization (NATO) standard [27] and later recommended by the BIPM [28]. With this 
model [26, 27], the delay through the troposphere in meters, 𝑑𝑡𝑟𝑜𝑝, is calculated as 
 
                                                          𝑑𝑡𝑟𝑜𝑝 = 𝑑𝑡𝑟𝑜𝑝𝑧 1

sin(𝜀)+ 0.00143
tan(𝜀)+0.0455

 ,    (1) 
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where ε is the elevation angle of the satellite in radians. The 𝑑𝑡𝑟𝑜𝑝𝑧  term (total zenith delay) is computed 
differently based on the orthometric height (altitude) of the antenna. For a height of less than 1 km, 
 
                        𝑑𝑡𝑟𝑜𝑝 

𝑧 = �1430 + 732 + {𝑆𝑅 × (1 − 𝐻) + 0.5∆𝑁(1 −  𝐻2)}�  × 10−3,  (2) 
 
and for a height greater than or equal to 1 km and not exceeding 9 km, 
 

                           𝑑𝑡𝑟𝑜𝑝 
𝑧 = �732 +  �𝑁1

𝑐
× exp�−𝑐(𝐻 − 1)� − exp (−8𝑐)��  × 10−3,  (3) 

 
where 
 
      SR is the global mean sea level refractivity, the recommended constant of 324.8 [27] is used in the 
software; 
 
H is the orthometric height in kilometers; 
 
∆𝑁 = −7.32 × exp (0.005577 × 𝑆𝑅); 
 
𝑁1 = 𝑆𝑅 + ∆𝑁; and 
 

𝑐 = 1
8

× log ( 𝑁1
105

). 
 
      The delay correction, 𝑑𝑡𝑟𝑜𝑝, is then converted from meters to nanoseconds using the speed of light 
constant (299 792 458 m/s). Figure 7 shows the tropospheric delay correction as a function of elevation 
angles between 10º and 90º at an antenna height of 1645 m (the approximate altitude of the NIST 
laboratories in Boulder). Note that the correction falls below 10 ns at an elevation angle of slightly higher 
than 40º. 
 

 
 

Fig. 7. The tropospheric delay correction as a function of elevation angle in Boulder, Colorado. 
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      The slopes of REFSV, REFGPS, MDTR, and MDIO, each expressed in units of 0.1 ps/s, are contained 
in the SRSV, SRGPS, SMDT, and SMDI fields, respectively. Each of these slopes is computed from a linear 
fit [8]. 
      After the receiver is started (Sec. 4), the software continues to make REFGPS measurements and to 
create new CGGTTS files (one file per day), until it is stopped by the user. Under normal operation, the 
receiver is expected to run continuously, 24 hours a day, 7 days a week. 
 
 
4.  Receiver Operation 
 
      Before the receiver is operated, four cables must be connected to the back panel (Fig. 2). The antenna 
cable is connected to the TNC connector labeled “GPS ANTENNA”. A cable with a 1 pulse per second 
(pps) signal from the local UTC time scale is connected to the BNC connector labeled “REFERENCE 
1PPS”. The delay of this cable must be measured and recorded as it will later be entered as the REF delay. 
A cable with a stable 5 or 10 MHz signal is connected to the BNC connector labeled “TIMEBASE”. This 
signal can originate from the same standard as the 1 Hz signal. It serves as the time base for the time 
interval counter inside of the TAI-1 receiver. The signal level should be between 200 mV and 3.5 V peak-
to-peak, or 70 mV to 1.25 V (rms) with 50 Ω termination. The delay of the cable used for the time base 
connection does not need to be measured or recorded. Finally, an Ethernet cable is used to connect the 
TAI-1 receiver to a network jack for Internet access. 
      After the receiver is turned on and the operating system has finished loading, the NIST TAI-1 receiver 
software should run automatically and the opening display will appear (Fig. 8). There are six large buttons 
located in the bottom right corner of the display that are used to control the receiver’s operation. The first 
step is to enter the configuration parameters. This is done by touching the configuration button to bring up 
the display shown in Fig. 9. 
 
 

 
 

Fig. 8. Initial receiver display. 
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Fig. 9. Receiver configuration screen. 
 
 
      Some of the information on this screen was entered at NIST prior to shipment and should not be 
changed by the user. For example, the Receiver Name field contains the identifying information for the 
receiver (manufacturer, model, and serial number). It was entered at NIST, and is usually not changed. The 
INT Delay and CAB Delay were entered at NIST after the receiver was calibrated (Sec. 5). They should not 
be changed unless the receiver is recalibrated, either at NIST or with a travelling receiver that serves as a 
transfer standard. The Serial Port field contains the number of the serial port that controls the OEM 
receiver board. It should not be changed unless the receiver board is reinstalled. 
      The information that identifies the timing laboratory was supplied by the BIPM when the application 
was made to contribute to UTC. This information must be entered by the user (if it was not previously 
entered for the user by NIST). This information includes the Lab Acronym (four characters), the Lab Code 
(five digits), the Lab Prefix (two characters), and the UTC Code (seven digits). The Time Scale field 
contains the designation for your local UTC time scale. It is entered in the form UTC(k), where k is equal to 
the four-character laboratory acronym. For example, UTC(NIST) refers to the local UTC time scale at 
NIST. The Comment Line field allows you to enter a comment to be stored inside of all of the CGGTTS 
files. Entering a comment is optional. 
      The user is also required to enter a value in the REF Delay field. This value, expressed in nanoseconds, 
represents the delay of the cable that connects the local UTC time scale to the TAI-1 receiver. It is obtained 
from the measurement of the cable prior to installation. In addition, the user is allowed to select a value for 
the mask angle, or the lowest elevation angle above the horizon where satellites will be tracked. It can be 
set from 0° to 25° in 5° increments. Raising the mask angle reduces the number of visible satellites and the 
magnitude of the ionospheric and tropospheric corrections; lowering the mask angle does the opposite. For 
most locations, a mask angle of 10° is recommended. When all of the necessary information is entered, it 
can be saved by touching the Save button. 
      After the configuration information is saved, the user must enter the coordinates of the GPS antenna. 
The antenna coordinates are normally entered only once, and the process only needs to be repeated if the 
antenna is moved. The coordinates are entered either by keying in previously known coordinates, or by 
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having the receiver survey it’s own antenna position for 24 hours. If the survey option is used, the latitude 
and longitude estimates are typically accurate to within 50 cm, but in extreme cases, the altitude error can 
exceed 15 m, resulting in a timing uncertainty that can approach 50 ns. Thus, the built-in antenna survey 
should only be used to estimate altitude if no other method is available to the user. If possible, users should 
independently survey the altitude of the antenna’s location with a geodetic receiver. 
      Users can manually enter the antenna coordinates by touching the Coordinates button. This results in a 
new window appearing (Fig. 10). Coordinates are then entered with an allowable resolution of 1 
milliarcsecond for latitude and longitude and 1 cm for altitude, and are saved by touching the Save button. 
 

 
 

Fig. 10. Antenna coordinates screen. 
 
 
      Users can have the receiver survey its own antenna position by touching the Survey Position button. 
The receiver is reset, and will then begin to look for satellites. It might take several minutes before it 
produces its first position fix. Once the first position fix is obtained, coordinates are averaged for 24 hours 
(86 400 s). During the antenna survey, the latitude, longitude, and altitude fields will be updated, and the 
samples field will show the number of position fixes that have been averaged so far. After 86 400 valid 
position fixes have been obtained, the average antenna position is automatically saved and the system is 
ready to begin measurements. 
      After the system parameters and antenna coordinates have been entered, the receiver can be started by 
simply touching the Go button. The receiver will then calibrate its time interval counter, check the current 
status of GPS satellite reception, and begin to collect and store measurements. When the receiver is 
recording measurements, the “Rx Status” field will be green and will display the message “Tracking 
Satellites”. The “REF - GPS” field will display the current time measurement against a yellow background 
(Fig. 11). Because time measurements should be made continuously, the user should leave the receiver 
running in this mode at all times. However, touching the Stop button will stop the measurements if it is 
necessary, and touching the Exit button will exit the software. 
      The receiver display is divided into two areas. The left side of the display contains general information 
about the receiver and the measurements (Table 1). The top right corner of the display contains information 
about the GPS satellites that are currently being tracked (Table 2). The rows in the top right corner of the 
display represent the 12 channels available for tracking GPS satellites. There are likely to be brief periods 
when the receiver does track 12 satellites, but it is customary for one or more of the channels to be unused 
at any given time. 
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Fig. 11. The receiver display when measurements are being recorded. 
 
 
      A software application called BIPM_FTP loads and runs automatically and should always be visible on 
the operating system taskbar. This application sends the current CGGTTS file to the BIPM every hour via 
the file transfer protocol (FTP). Users are instructed to always leave BIPM_FTP running, because the data 
transfer to the BIPM will stop if this application is closed. Users who need to check whether the file 
transfers are working, or who need to change the configuration, can click on the minimized application on 
the taskbar to see the current upload status. Touching the Configure button displays a screen that allows 
users to enter or change the required FTP information. Login and password information is supplied by the 
BIPM. The application requires that ports 20 and 21 are open on the user’s local firewall, or the file 
transfers will be blocked. 
 
 
5.  Receiver Calibration 
 
      Before a TAI-1 receiver is shipped, each user is asked to supply NIST with the length of antenna cable 
that they need. A custom length cable is obtained, and the cable delay is calibrated at NIST with an 
uncertainty of about 0.1 ns. This value is keyed into the receiver under test and stored as the CAB DLY 
value in the CGGTTS file. The combined receiver and antenna delay, designated as INT DLY in the 
CGGTTS file, is obtained through a common-clock calibration, relative to the NIST reference receiver, as 
illustrated in Fig. 12. 
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 Table 1. Measurement information displayed by the NIST TAI-1 receiver. 
 

Parameter Description 
Date The current UTC date (YYYY-MM-DD) and the Modified Julian Date. 
Time The current time (UTC HH:MM:SS) obtained from the GPS broadcast.  
Temperature The temperature obtained from a sensor on the CPU board. This sensor is read every second, but the 

resolution is only 1 °C. 
Rx Status 
 

This message normally changes only during GPS signal acquisition or an antenna survey. During 
signal acquisition, the messages are displayed with a red background. During normal operation, the 
“Tracking Satellites” message is displayed with a green background. 

Filename The name of the current CGGTTS file being generated by the receiver. CGGTTS filenames follow 
a standard format defined by the BIPM. The filename begins with “GM” to indicate that the 
receiver is using the GPS multichannel technique to collect data. This is followed the two-character 
laboratory prefix, two underscore characters, and the Modified Julian Date (MJD). The first two 
digits of the MJD are part of the filename and the last three digits serve as the file extension. 

Track Start 
 

The start time for the current 16-minute satellite track, as specified by the CGGTTS format. Note 
that data are stored for only 13 of the 16 minutes. No data are stored during the first two minutes or 
during the last minute of the 16-minute segment. 

Track Counter 
 

The current track number (a value from 1 to 89) and the current reading number (a value from 1 to 
780). Because no data are stored during the first two minutes of the track or during the last minute, 
the word “Idle” is substituted for the reading number during those periods. 

REF - GPS The most recent reading from the time interval counter (displayed on a yellow background). If the 1 
pps signal from the GPS receiver is early with respect to the local time scale, a negative number will 
be displayed. The REF – GPS reading is the time difference between the local UTC time scale and 
GPS, with the ionospheric and tropospheric delay corrections already applied. The unit is 
nanoseconds. 

Uncorrected The REF – GPS reading (above) without the ionospheric and tropospheric delay corrections. The 
unit is nanoseconds. 

Min/Max The smallest and largest readings recorded from the time interval counter during the current UTC 
day. The unit is nanoseconds. 

Range The maximum reading minus the minimum reading, in nanoseconds. 
Average The average reading recorded from the time interval counter during the current day. The unit is 

nanoseconds. 
Sigma The standard deviation of the difference between two successive readings, given in nanoseconds. 

This value is a rough estimate of the stability of the system at an averaging period of 1 second. 
Latitude The latitude of the GPS antenna. The resolution is 1 milliarcsecond. 
Longitude The longitude of the GPS antenna. The resolution is 1 milliarcsecond. 
Altitude The altitude of the GPS antenna. The resolution is 1 cm. 
TIC Cal Time The date and time of the last time interval counter calibration. 
Resolution (ps) The resolution of the start and stop inputs on the time interval counter, given in picoseconds. The 

resolution of both the start and stop inputs should be less than 50 picoseconds. 
TIC Delay (ns) The time offset due to delays in the time interval counter, given in nanoseconds. This value is 

applied as a correction to each TIC reading.  
 
 
 
 Table 2. Satellite information displayed by the NIST TAI-1 receiver. 
 

Column Heading Description 
PRN The pseudo random noise code (PRN) for each satellite being tracked. The GPS 

constellation has 32 slots, and thus PRN codes have possible values ranging from 1 to 32. 
dBm The signal strength of each satellite being tracked. These numbers should normally be in 

the -127 to -133 dBm range. Numbers smaller than -135 dBm indicate that local signal 
conditions are poor. 

TD (ns) The time difference (in nanoseconds) between the last time measurement recorded from the 
specified satellite and the average time measurement recorded from all of the satellites in 
view. 

MDIO The modelled ionospheric delay correction for the satellite, in nanoseconds.  
MDTR The modelled tropospheric delay correction for the satellite, in nanoseconds. 
AZTH The azimuth angle (in degrees) of the satellite. 
ELV The elevation angle (in degrees) of the satellite. 
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Fig. 12. Common-clock calibration of receiver under test. 
 
 
      The common clock is a 1 pps signal from the UTC(NIST) time scale. The cables that connect both the 
reference receiver and the receiver under test to the UTC(NIST) time scale are carefully calibrated by the 
NIST staff with an uncertainty of about 0.1 ns. The delay of the cable that connects the receiver under test 
to the UTC(NIST) time scale is keyed into the software and becomes the REF DLY value in the CGGTTS 
file. 
      The common-clock calibration takes place at the NIST laboratories in Boulder, Colorado. As shown in 
Fig. 12, the receiver under test has its antenna located just a short baseline away (~40 m) from the reference 
receiver antenna. The reference receiver for the calibration is a dual-frequency unit that was designated as 
the primary NIST time transfer receiver in 2006 [29]. 
      The antenna for the receiver under test is mounted on a pole on an antenna platform located on the roof 
of the NIST laboratories (Fig. 13). Each pole on this platform has coordinates known to within 20 cm. 
These coordinates were obtained through surveys conducted with geodetic receivers and a differential 
position service. The known coordinates are keyed in to the receiver under test prior to the calibration. 
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Fig. 13. Antenna platform on rooftop of the NIST laboratories in Boulder, Colorado. 
 
 
      Each calibration lasts for 10 days (240 hours). A calibration is accepted only if there are no significant 
outliers, no signal outages or equipment interruptions, and if the time deviation, 𝜎𝑥(𝜏), [30] of the reduced 
common-view data is ~1 ns at τ = 1 day. 
      The results of a common-clock calibration are obtained with software written at NIST. The software 
processes the CGGTTS files from both the reference receiver and the receiver under test and produces the 
average time difference between them. This time difference is keyed into the receiver under test with a 
resolution of 0.1 ns. It becomes the INT DLY value in the CGGTTS file. 
      The uncertainty of the calibrations is limited by environmental factors, including laboratory and 
outdoor temperatures, but the common-clock calibration method produces stable and repeatable results. 
The daily values can vary by multiple nanoseconds, but historical results indicate that the measurement of 
the INT DLY value is likely to be stable when obtained from a 10-day average, and typically will not vary 
by significantly more than 1 ns [31]. 
      The REF DLY value is erased from the receiver software prior to shipment. The user is responsible for 
entering a new value for REF DLY that represents the delay of the cable that connects the receiver to their 
own time scale. Users are instructed not to change the values of CAB DLY and INT DLY, nor to change 
the antenna cable or antenna, as any of these changes would make the receiver calibration invalid. Figure 
14 is a graph of a 10-day calibration of a NIST TAI-1 receiver, with the results summarized in Table 3. 
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Fig. 14. Graph of 10-day common-clock calibration of NIST TAI-1 receiver. 
 
 
 
 
      Table 3. Results of 10-day common-clock calibration of NIST TAI-1 receiver. 
 

Antenna Cable Length 21.4 m 
CAB DLY 85.3 ns 

Day Number Date (MJD) Time Difference (ns) 
1 2014-07-09 (56847) 26.6 
2 2014-07-10 (56848) 25.0 
3 2014-07-11 (56849) 23.4 
4 2014-07-12 (56850) 23.1 
5 2014-07-13 (56851) 24.3 
6 2014-07-14 (56852) 24.1 
7 2014-07-15 (56853) 22.6 
8 2014-07-16 (56854) 26.3 
9 2014-07-17 (56855) 25.3 

10 2014-07-18 (56856) 26.9 

Calibration Results 
INT DLY 
(average time difference) 24.8 

Time Deviation, 𝜎𝑥(𝜏) 1.1 
 
 
  

http://dx.doi.org/10.6028/jres.119.024
http://dx.doi.org/10.6028/jres.119.024


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.024 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 600 http://dx.doi.org/10.6028/jres.119.024 

 

6.  Summary 
 
      An inexpensive time transfer receiver has been developed at NIST to allow timing laboratories to 
contribute data to the computation of Coordinated Universal Time (UTC). The receiver compares the 
laboratory’s local realization of UTC, to signals broadcast by Global Positioning System (GPS) satellites, 
storing results in the CGGTTS file format accepted by the Bureau International des Poids et Mesures 
(BIPM). The receiver was designed to fulfill a need for a low-cost time transfer receiver that can be 
deployed in nations where resources are limited, and where new national timing laboratories are still being 
established. The receiver has sufficient stability and accuracy to easily characterize the time scales of these 
laboratories, and has been engineered to be reliable and easy to use. 
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