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The transmission electron microscope can focus 
electrons onto a small region of a specimen, typi­
cally 1 nm to 1 JLm in diameter. If the specimen is 
suitably thin (preferably < 100 nm) and the trans­
mitted electrons enter a high-resolution electron 
spectrometer, an electron energy-loss spectrum is 
produced. This spectrum (fig. 1) contains a zero­
loss peak, representing elastic scattering, one or 
more peaks in the 4-40 eV range (due to inelastic 
scattering from outer-shell electrons) and, at higher 
energy loss and lower intensity, characteristic 
edges due to ionization of inner atomic shells. 
These latter features are used in elemental micro­
analysis, usually by fitting a background in front of 
each edge and measuring the area Ie over an energy 
range A beyond each edge; see figure 1. The num­
ber of atoms (N per unit specimen area) of a partic­
ular element can be obtained from [1]: 

(1) 

The factor G makes allowance for any increase in 
detector gain between recording the low-loss re­
gion (area 1\) and the ionization edges; CTe is a crosS 
section for inner-shell scattering over the appropri­
ate range of energy loss, which can be calculated 
from atomic theory or obtained experimentally. 
Energy-loss spectroscopy is therefore capable of 
providing absolute, standardless elemental analysis, 
although in practice it is usually the ratio of two 
elements which is of interest, in which case the 
quantities G and II cancel and need not be mea­
sured. 

Energy-loss spectroscopy has been used to iden­
tify quantities of less than 10-20 g and concentra­
tions of less than 100 ppm of elements such as 
phosphorus and calcium in an organic matrix [2,3]. 
However, the accuracy of quantitative analysis, us­
ing eq (I), is often no better than 20%. The main 
Sources of error, and possibilities for their removal, 
are discussed below. 
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Background Subtraction 

The pre-edge background is usually taken to be a 
power law: AE-r where E represents energy loss, 
A and r being found by least-squares fitting over a 
pre-edge region. Particularly for lower-energy 
edges where the background is relatively high, al­
ternative fitting functions or procedures have been 
used to reduce systematic errors [2,4-6]. Also be­
cause the background must be extrapolated rather 
than interpolated, statistical errors tend to be high 
[6]. Both types of error could be reduced by fitting 
over both the pre-edge and a post threshold region 
[7,8]. Where the elemental concentration is low, 
the use of digital filters [9] and differential-mode 
spectrum recording [2] is being developed. 

Effect of Elastic Scattering 

Equation (1) would be exact if inner-shell excita­
tion were the only mode of scattering or if all scat­
tered electrons contributed to the energy-loss 
spectrum. In practice, the spectrometer collects 
scattering only up to some angle {3, and this fact is 
taken into account to first order by using a cross 
section frc ({3,A.) evaluated over the appropriate an­
gular range. However, to reduce the background 
contribution from plural scattering, f3 is usually 
chosen to be in the range 3-15 mrad, and as a result 
most of the elastically scattered electrons are ex­
cluded from the spectrometer. With a crystalline 
specimen, diffracted beams contribute additional 
intensity to Ic, in the form of plural (elastic + inner­
shell) scattering [1,10], causing N to be overesti­
mated. The systematic error involved depends on 
the edge energy (which determines the angular 
width () E of the inner-shell scattering) and the spec­
imen thickness and orientation (which determine 
the intensity of the diffracted beams); see figure 2. 
It is therefore not surprising to find that elemental 
ratios measured from test samples become inaccu­
rate for thicker specimens or under strongly dif­
fracting conditions [1,6,11]. Efforts are continuing 
to find a simple method of correcting for the dif­
fracted electrons. In an amorphous material, the 
equivalent errors should be much reduced [1]. 

Accuracy of Inner-Shell Cross Sections 

The accuracy of absolute quantification is clearly 
dependent on the accuracy with which frc is 
known; likewise, the accuracy of elemental ratios 
will depend on the relative accuracy of the inner-
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shell cross sections. K -shell cross sections can be 
calculated rapidly (on-line) by use of a hydrogenic 
approximation, probably to an accuracy of around 
10% [12]. Hydrogenic L-shell cross sections re­
quire some empirical correction, originally based 
on photoabsorption data [13]. 

Hartree-Slater or Dirac-Slater calculations can 
be carried out for all atomic shells [14] and should 
be more accurate, though more time-consuming. 
Within the last year or two, systematic experimen­
tal determinations of K -, L -, and M -shell cross­
section ratios have been made for the ionization 
edges of most interest [15,16]. As a result, correc­
tion parameters used in the hydrogenic L -shell 
program have been modified [6] and further refine­
ment may be desirable. A parameterization scheme 
for all edges of practical importance is also being 
investigated since the measured cross-section ratios 
("k-factors") apply only for given values of {3, II 
and incident-electron energy. 

Lens-Aberration Errors 

Spherical and chromatic aberrations of any elec­
tron lenses between the specimen and spectrometer 
can cause a loss of energy resolution, spatial resolu­
tion and collection efficiency, all of which could 
lead to analysis errors, dependent on the values of 
{3, edge energy, spatial resolution (e.g., incident­
beam diameter) and the type of electron-optic cou­
pling [6]. Severe effects have been reported in 
cases where one of the post-spectrometer lenses is 
operating with an object distance close to its focal 
length [17]. More work needs to be done to assess 
the performance of conventional microscope lenses 
at high energy loss. 

Radiation Damage 

The electron beam used for microanalysis can 
cause both structural damage and chemical change 
(mass loss) within the analyzed region, leading to 
errors in elemental ratios. With a high-brightness 
electron source, this problem is observable even 
with inorganic specimens [18]. Use of a liquid­
nitrogen stage may reduce the radiation sensitivity, 
particularly of organic specimens. Parallel-record­
ing spectrometers, now commercially available, 
will greatly increase the signal-collection efficiency 
and reduce the electron exposure required to ob­
tain an acceptably noise-free spectrum. In fact, the 
radiation-damage problem is not so severe as in x­
ray emission spectroscopy, where the collection 
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efficiency and fluorescence
ments) are both much lower.

yield (for light ele-

Figure 1. Schematic energy-loss spectrum with a gain incre-
ment G between the low-loss and high-loss regions.
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Figure 2. Angular distributions of inelastic scattering around
the undiffracted beam and around a beam diffracted through an
angle a. The shaded area represents the contribution from the
diffracted beam to the intensity collected by an on-axis aperture
of semi-angle A3.
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Introduction

The atom probe field-ion microscope (APFIM)
is a unique analytical instrument that can analyze
metals and semiconducting materials on the atomic
scale. In recent years, the atom probe has de-
veloped into one of the most powerful instruments
available for routine microstructural and micro-
chemical analysis of materials. The types of inves-
tigations that have been performed have en-
compassed many diverse metallurgical subjects
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