
Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.

It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number:

Title:

Publication Date(s):

Withdrawal Date:

Withdrawal Note:

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number:

Title:

Author(s):

Publication Date(s):

URL/DOI:

Additional Information (if applicable)

Contact:

Latest revision of the

attached publication:

Related information:

Withdrawal
announcement (link):

Date updated: October 29, 2015

NISTIR 7987

Policy Machine: Features, Architecture, and Specification

May 2014

October 27, 2015

NIST 7987 is superseded in its entirety by the publication of NISTIR
7987 Revision 1 (October 2015).

NISTIR 7987 Revision 1

Policy Machine: Features, Architecture, and Specification

D. Ferraiolo; S. Gavrila; W. Jansen

October 2015

http://dx.doi.org/10.6028/NIST.IR.7987r1

Computer Security Division (Information Technology Laboratory)

NISTIR 7987 Rev. 1 (as of October 29, 2015)

http://csrc.nist.gov/pm/

N/A

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

NISTIR 7987

Policy Machine:

Features, Architecture, and

Specification

David Ferraiolo

Serban Gavrila

Wayne Jansen

http://dx.doi.org/10.6028/NIST.IR.7987

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

NISTIR 7987

Policy Machine:

Features, Architecture, and

Specification

David Ferraiolo

Serban Gavrila

Computer Security Division

Information Technology Laboratory

Wayne Jansen

Booz Allen Hamilton

McLean, VA

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.7987

May 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 ii

National Institute of Standards and Technology Internal Report 7987

108 pages (May 2014)

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.7987

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or

endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best

available for the purpose.

There may be references in this publication to other publications currently under development by NIST in

accordance with its assigned statutory responsibilities. The information in this publication, including concepts and

methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus,

until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain

operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of

these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback

to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at

http://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and

Technology (NIST) promotes the U.S. economy and public welfare by providing technical

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test

methods, reference data, proof of concept implementations, and technical analyses to advance

the development and productive use of information technology. ITL’s responsibilities include the

development of management, administrative, technical, and physical standards and guidelines for

the cost-effective security and privacy of other than national security-related information in

Federal information systems.

Abstract

The ability to control access to sensitive data in accordance with policy is perhaps the most

fundamental security requirement. Despite over four decades of security research, the limited

ability for existing access control mechanisms to enforce a comprehensive range of policy

persists. While researchers, practitioners and policy makers have specified a large variety of

access control policies to address real-world security issues, only a relatively small subset of

these policies can be enforced through off-the-shelf technology, and even a smaller subset can be

enforced by any one mechanism. This report describes an access control framework, referred to

as the Policy Machine (PM), which fundamentally changes the way policy is expressed and

enforced. The report gives an overview of the PM and the range of policies that can be specified

and enacted. The report also describes the architecture of the PM and the properties of the PM

model in detail.

Keywords

access control; authorization; computer security; privilege management

Acknowledgements

The authors, David Ferraiolo and Serban Gavrila of the National Institute of Standards and

Technology, and Wayne Jansen of Booz Allen Hamilton, wish to thank colleagues at NIST and

elsewhere, particularly Roger Cummings, who reviewed drafts of this document and contributed

to its technical content. Key improvements to this document would not have been possible

without the feedback and valuable suggestions of those individuals.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 iv

Table of Contents

1. Introduction ... 1

1.1 Purpose and Scope .. 2
1.2 Standards Alignment .. 3
1.3 Document Structure .. 3

2. Background ... 5

2.1 Access Control Models ... 6
2.2 Discretionary Access Control .. 7
2.3 Mandatory Access Control .. 8
2.4 Chinese Wall .. 9
2.5 Role Based Access Control ...10

3. Policy Machine Framework ...12

3.1 Core Policy Elements ..12
3.2 Assignments and Relations between Elements ...14
3.3 Associations and Privileges ...18
3.4 Prohibitions ..24
3.5 Obligations ..28

4. Administrative Considerations ...31

4.1 Administrative Associations and Privileges ..31
4.2 Administrative Access Requests and Reference Mediation33
4.3 Administrative Prohibitions and Obligations ...35
4.4 Administrative Commands and Routines ...40

5. Policy Specification ...44

5.1 Model Aspects and Use ...44
5.2 Levels of Policy and Administration ...49
5.3 Authority Level Examples ..52
5.4 Generic Access Rights ..55

6. Multiple Policy Class Considerations ..60

6.1 Association Refinements ...60
6.2 Prohibition Refinements ...61
6.3 Obligation Refinements ...62
6.4 Amalgamated Policy Examples ...62

7. Architecture ...70

7.1 Architectural Components ...70
7.2 Client Applications ...73
7.3 Security Considerations ...74

8. References ...76

List of Figures

Figure 1: Access Matrix .. 6

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 v

Figure 2: Simplified Policy Element Diagram ...15

Figure 3: Associations and Alternative Representations ..20

Figure 4: Simple Authorization Graph ...21

Figure 5: Simple Example Involving Administrative Associations ..32

Figure 6: Administrative Commands and Routines ..42

Figure 7: Partial Policy Element Diagram for the Mail System ...45

Figure 8: Authorization Graph for the Mail System ..45

Figure 9: Authorization Graph with Administrative Associations and Prohibitions46

Figure 10: Authorization Graph for the DAC Operating System ...48

Figure 11: DAC Authorization Graph with Objects ...49

Figure 12: Pattern of Authority Levels ...50

Figure 13: An Alternative Pattern of Authority Levels ..51

Figure 14: Policy Assignments and Associations for the Mail System DA53

Figure 15: Authorization Graph for the Mail System ..53

Figure 16: Policy Elements and Associations for the DAC DA ...54

Figure 17: Authorization Graph for the DAC Operating System ...55

Figure 18: DAC Segment of the Integrated System Policy ..63

Figure 19: Mail System Segment of the Integrated System Policy...64

Figure 20: Authorization Graph of the Integrated System Policy ...64

Figure 21: Authorization Graph for the MAC Policy Segment ..65

Figure 22: Authorization Graph for MAC-DAC system ...67

Figure 23: DAC-MAC Authorization Graph with Populated User ...68

Figure 24: Architectural Components of the PM ..70

Figure 25: Application’s Perspective of the PM Environment ...74

List of Tables

Table 1: Generic Non-administrative Access Rights ..55

Table 2: Generic Administrative Access Rights by Type ...56

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 1

1. Introduction

Access control as it pertains to a computing environment is the ability to allow or prevent an

entity from using a computing resource in some specific manner. A common example of

resource use is reading a file. The access control has two distinct parts: policy definition where

access authorizations to resources are specified, and policy enforcement where attempts to access

resources are intercepted, and allowed or disallowed. An access control policy is a

comprehensive set of access authorizations that govern the use of computing resources system

wide. Controlling access to sensitive data in accordance with policy is perhaps the most

fundamental security requirement that exists. Yet, despite more than four decades of security

research, existing access control mechanisms have a limited ability to enforce a wide,

comprehensive range of policies, and instead enforce a specific type of policy.

Most, if not all, significant information systems employ some means of access control. The main

reason is that without sufficient access control, the service being provisioned would likely be

undermined. Many types of access control policies exist. An enforcement mechanism for a

specific type of access control policy is normally inherent in any computing platform.

Applications built upon a computing platform typically make use of the access control

capabilities available in some way to suit its needs. An application may also institute its own

distinct layer of access controls for the objects formed and manipulated at the level of abstraction

it provides. A common example of an application abstraction layer is a database application that

implements a role-based access control mechanism, while operating on a host computer that

implements a more elementary discretionary access control mechanism.

When composing different computing platforms to implement an information system, a policy

mismatch can occur. A policy mismatch arises when the narrow range of policies supported by

the various access control mechanisms involved have differences that make them incompatible

for meeting a specific need. In some cases, it is possible to work around limitations in the ability

for all platforms to express a consistent access control policy, by mapping equivalences between

the available access control constructs to effect the intended policy. For example, a traditional

multi-level access control system that supports information flow policies has been demonstrated

as capable of effecting role-based access control policies through carefully designed and

administered configuration options [Kuh98]. However, such mappings require that the correct

semantic context is used consistently when administering policy, which can be mentally taxing

and error inducing, and prevent the desired policy from being maintained correctly in the

information system.

NIST has devised a general-purpose access control mechanism, referred to as the Policy Machine

(PM), which can express and enforce arbitrary, organization-specific, attribute-based access

control policies through policy configuration settings. The PM is defined in terms of a fixed set

of configurable data relations and a fixed set of functions that are generic to the specification and

enforcement of combinations of a wide set of attribute-based access control policies. The PM

offers a new perspective on access control in terms of a fundamental and reusable set of data

abstractions and functions. The goal of the PM is to provide a unifying framework that supports

commonly known and implemented access control policies, as well as combinations of common

policies, and policies for which no access control mechanism presently exists.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 2

Access control policies typically span numerous systems and applications used by an

organization. However, when users need to access resources that are protected under different

control mechanisms, the differences in the type and range of policies supported by each

mechanism can differ vastly, creating policy mismatches. If a PM mechanism were present in

every computing platform, obvious benefits would be not only the elimination of policy

mismatches, but also the ability to meet organizational security requirements readily, since a

wider range of arbitrary policies could be expressed uniformly throughout the platforms that

comprise an information system.

The PM can arguably be viewed as a dramatic shift in the way policy can be specified and

enforced. But more importantly, it can also be viewed as a way to develop applications more

effectively by taking advantage of the control mechanism offered by the PM and using it to meet

the access control needs for objects within the layer of abstraction the application provides. That

is, the PM framework affords applications a single generic facility that can not only enforce

access control policies comprehensively across distributed and centralized operating

environments, but also subsume aspects involving the characterization, distribution, and control

of implemented capabilities, resulting in a dramatic alleviation of many of the administrative,

policy enforcement, data interoperability, and usability challenges faced by enterprises today.

1.1 Purpose and Scope

The purpose of this Internal Report is to provide an overview of the PM and guidelines for its

implementation. The report explains the basics of the PM framework and discusses the range of

policies that can be specified and enacted. It also describes the architecture of the PM and the

details of key functional components.

The intended audience for this document includes the following categories of individuals:

 Computer security researchers interested in access control and authorization frameworks

 Security professionals, including security officers, security administrators, auditors, and

others with responsibility for information technology security

 Executives and technology officers involved in decisions about information technology

security products

 Information technology program managers concerned with security measures for

computing environments.

This document, while technical in nature, provides background information to help readers

understand the topics that are covered. The material presumes that readers have a basic

understanding of computer security and possess fundamental operating system and networking

expertise.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 3

1.2 Standards Alignment

NIST, and other members of an Ad Hoc International Committee for Information Technology

Standards (INCITS) working group is developing a three part PM standard under the title of

"Next Generation Access Control" (NGAC). This work is being conducted under three sub-

projects:

 Project 2193–D: Next Generation Access Control – Implementation Requirements,

Protocols and API Definitions.

 Project 2194–D: Next Generation Access Control – Functional Architecture.

 Project 2195–D: Next Generation Access Control – Generic Operations and Abstract

Data Structures.

The Policy Machine's architecture was the basis for the NGAC work within INCITS. An initial

standard from this work was published in 2013 and is now available from the ANSI estandards

store as INCITS 499 – NGAC Functional Architecture (NGAC–FA).

At the time of this publication a draft proposed standard for Project 2195–D: NGAC Generic

Operations & Abstract Data Structures (NGAC-GOADS), had begun the approval process, and is

expected to reach the Public Review stage in the summer of 2014.

Although this document is in a self-consistent state and many aspects are consistent with ANSI

INCITS 499 and NGAC-GOADS, differences do exist. The most significant being the treatment

of administrative abstractions. It is our intent, once the NGAC family of standards is complete to

publish a revision to this Interagency Report that is in close alignment with these standards.

1.3 Document Structure

The remainder of this document is organized into the following chapters:

 Chapter 2 provides background information on access control models, including several

examples of popular, well-known models.

 Chapter 3 explains the framework of the policy machine model, including key elements,

relationships, and abstractions of the model, the notation for expressing policies, and

some introductory examples of policy.

 Chapter 4 examines various aspects of the policy model regarding the administration of

policy.

 Chapter 5 reviews ways to apply the framework to specify various types of policies.

 Chapter 6 looks at issues that arise with the integration of multiple policies and ways to

apply the framework.

http://www.techstreet.com/standards/incits/499_draft?product_id=1827386

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 4

 Chapter 7 provides an overview of the key architectural components and interactions of

the PM.

 Chapter 8 contains a list of references.

Sidebars containing auxiliary material related to the main discussion appear in gray text boxes

throughout the main body of the document. At the end of the document, there are also

appendices that contain supporting material. Appendix A provides a list of acronyms used in the

report and Appendix B provides explanations about some of the mathematical notation used.

Appendix C provides a list of core functions and commands for the PM model and their semantic

description. Appendix D outlines three approaches for supporting personas within the PM

model.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 5

2. Background

Classical access control models and mechanisms are defined in terms of subjects (S), access

rights (A), and named objects (O). Users represent individuals who directly interact with a

system and have been authenticated and established their identities. A user identity is unique and

maps to only one individual. A user is unable to access objects directly, and instead must

perform accesses through a subject. A subject represents a user and any system process or entity

that acts on behalf of a user. Subjects are the active entities of a system that can cause a flow of

information between objects or change the security state of the system.

Objects are system entities that must be protected. Each object has a unique system-wide

identifier. The set of objects may pertain to processes, files, ports, and other system abstractions,

as well as system resources such as printers. Subjects may also be included in the set of objects.

In effect, this allows them to be governed by another subject. That is, the governing subject can

administer the access of such subjects to objects under its control. The selection of entities

included in the set of objects is determined by the protection requirements of the system.

Subjects operate autonomously and may interact with other subjects. Subjects may be permitted

modes of access to objects that are different from those other subjects. When a subject attempts

to access an object, a reference mediation function determines whether the subject’s assigned

permissions adequately satisfy policy before allowing the access to take place. In addition to

carrying out user accesses, a subject may maliciously (e.g., through a Trojan horse) or

inadvertently (e.g., through a coding error) make requests that are unknown to and unwanted by

its user.

An access matrix provides a simple representation of the access modes to an object for which a

subject is authorized [Lam71, Gra72, Har76]. Figure 1 provides a simple illustration of an

access matrix. Each row of the matrix represents a subject, Si, while each column represents an

object, Oi. Each entry, Ai,j, at the intersection of a row and column of the matrix, contains the set

of access rights for the subject to the object. The access matrix model, while simple, can express

a broad range of policies, because it is based on a general form of an access rule (i.e., subject,

access mode, object), and imposes little restriction on the rule itself.

Since, in most situations, subjects do not need access rights to most objects, the matrix is

typically sparse. Several, more space-efficient representations have been proposed as

alternatives. An authorization relation, for example, represents an access matrix as a list of

triples of the form (Si, Ai,j, Oj). Each triple represents the access rights of a subject to an object

and this representation is typically used in relational database systems [San94].

Access control and capability lists are two other forms of representation. An access control list

(ACL) is associated with each object in the matrix and corresponds to a column of the access

control matrix. Each access entry in the ACL contains the pair (Si, Ai,j), which specifies the

subjects that can access the object, along with each subject’s rights or modes of access to the

object. ACLs are widely used in present-day operating systems. Similarly, a capability list is

associated with each subject and corresponds to a row of the matrix. Each entry in a capability

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 6

list is the pair (Ai,j, Oj), which specifies the objects the subject can access, along with its access

rights to each object. A capability list can thus be thought of as the inverse of an access control

list. Capability lists, when bound with the identity of the subject, have use in distributed

systems.

Figure 1: Access Matrix

A key difference between the capability list and access control list is the subject’s ability to

identify objects. With an access control list, a subject can identify any object in the system and

attempt access; the access control mechanism can then mediate the access attempt using the

object’s access list to verify whether the subject is authorized the request mode of access. In a

capability system, a subject can identify only those objects for which it holds a capability.

Possessing a capability for the object is a requisite for the subject to attempt access to an object,

which is then mediated by the reference mediation function. Both the contents of access control

and capability lists, as well as the access control mechanism itself, must be protected from

compromise to prevent unauthorized subjects from gaining access to an object.

2.1 Access Control Models

Discretionary models form a broad class of access control models. Discretionary in this context

means that subjects, which represent users as opposed to administrators, are allowed some

freedom to manipulate the authorizations of other subjects to access objects [Hu06]. Non-

discretionary models are the complement of discretionary models, insofar as they require that

access control policy decisions are regulated by a central authority, not by the individual owner

of an object. That is, authorizations can be changed only through the actions of subjects

representing administrators, and not by those representing users [Hu06]. With non-discretionary

models, subjects and objects are typically classified into or labeled with distinct categories.

Category-sensitive access rules that are established through administration completely govern the

access of a subject to an object and are not modifiable at the discretion of the subject.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 7

Many different access control models, both discretionary and non-discretionary, have been

developed to suit a variety of purposes. Models are often developed or influenced by well-

conceived organizational policies for controlling access to information, whose key properties are

generalized, abstracted, and described in some formal or semi-formal notation. Therefore,

models typically differ from organizational policy in several ways. As mentioned, models deal

with abstractions that involve a formal or semi-formal definition, from which the presence or

lack of certain properties may be demonstrated. Organizational policy on the other hand is

usually a more informally stated set of high-level guidelines that provide a rationale for the way

accesses are to be controlled, and may also give decision rules about permitting or denying

certain types of access. Policies may be also incomplete, include statements at variable levels of

discourse, and contain self-contradictions, while models typically involve only essential

conceptual artifacts, are composed at a uniform level of discourse, and provide a consistent set of

logical rules for access control.

Organizational objectives and policy for access control may not align well with those of a

particular access control model. For example, some models enforce a strict policy that may too

restrictive for some organizations to carry out their mission, but essential for others. Even if

alignment between the two is strong, in general, the organizational access control policy may not

be satisfied fully by the model. For example, different federal agencies can have different

conformance directives regarding privacy that must be met, which affect the access control

policy. Nevertheless, access control models can provide a strong baseline from which

organizational policy can be satisfied.

Well-known models include Discretionary Access Control, Mandatory Access Control, Role

Based Access Control, One-directional Information Flow, Chinese Wall, Clark-Wilson, and N-

person Control. Several of these models are discussed below to give an idea of the scope and

variability between models. They are also used later in the report to demonstrate how seemingly

different models can be expressed using the PM model.

It is important to keep in mind that models are written at a high conceptual level, which

stipulates concisely the scope of policy and the desired behavior between defined entities, but not

the security mechanisms needed to reify the model for a specific computational environment,

such as an operating system or database management system. While certain implementation

aspects may be inferred from an access control model, such models are normally implementation

free, insofar as they do not dictate how an implementation and its security mechanisms should be

organized or constructed. These aspects of security are addressed through information assurance

processes.

2.2 Discretionary Access Control

The access matrix discussed in the previous section was originally envisioned as a discretionary

access control (DAC) model [Lam71, Gra72]. Many other DAC models have been derived from

the access matrix and share common characteristics. The access matrix was later formalized as

the now well-known HRU model and used to analyze the complexity of the safety properties of

the model, which was found to be undecidable [Har76, Tri06]. DAC policies can be expressed

in the HRU model, but DAC should not be equated to it, since the HRU model is policy neutral

and can also be used to express access control control policies that are non-discrectionary [Li05].

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 8

In addition to an administrator’s ability to manipulate a subject’s authorization to access objects,

a DAC access matrix model leaves a certain amount of control to the discretion of the object's

owner. Ownership of an object is typically conferred to the subject that created the object, along

with the capabilities to read and write the object. For example, it is the owner of the file who can

control other subjects' accesses to the file. Control then implies possession of administrative

capabilities to create and modify access control entries associated with a set of other subjects,

which pertain to owned objects. Control may also involve the transfer of ownership to other

subjects. Only those subjects specified by the owner may have some combination of permissions

to the owner’s files.

DAC policy tends to be very flexible and is widely used in the commercial and government

sectors. However, DAC potentially has two inherent weaknesses [Hu06]. The first is the

inability for an owner to control access to an object, once permissions are passed on to another

subject. For example, when one user grants another user read access to a file, nothing stops the

recipient user from copying the contents of the file to an object under its exclusive control. The

recipient user may now grant any other user access to the copy of the original file without the

knowledge of the original file owner. Some DAC models have the ability to control the

propagation of permissions. The second weakness is vulnerability to Trojan horse attacks, which

is common weakness for all DAC models. In a Trojan horse attack, a process operating on

behalf a user may contain malware that surreptitiously performs other actions unbeknownst to

the user.

2.3 Mandatory Access Control

Mandatory Access Control (MAC) is a prime example of a non-discretionary access control

model. MAC has its origins with military and civilian government security policy, where

individuals are assigned clearances and messages, reports, and other forms of data are assigned

classifications [San94]. The security level of user clearances and of data classifications govern

whether an individual can gain access to data. For example, an individual can read a report, only

if the security level of the report is classified at or below his or her level of clearance.

Defining MAC for a computer system requires assignment of a security level to each subject and

each object. Security levels form a strict hierarchy such that security level x dominates security

level y, if and only if, x is greater than or equal to y within the hierarchy. The U.S. military

security levels of Top Secret, Secret, Confidential, and Unclassified are a good example of a

strict hierarchy. Access is determined based on assigned security levels to subjects and objects

and the dominance relation between the subject’s and object’s assigned security.

The security objective of MAC is to restrict the flow of information from an entity at one

security level to an entity at a lesser security level. Two properties accomplish this. The simple

security property specifies that a subject is permitted read access to an object only if the subject’s

security level dominates the object’s security level. The -property specifies that a subject is

permitted write access to an object only if the object’s security level dominates the subject’s

security level. Indirectly, the -property, also referred to as the confinement property, prevents

the transfer of data from an object of a higher level to an object of a lower classification and is

required to maintain system security in an automated environment.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 9

These two properties are supplemented by the tranquility property, which can take either of two

forms: strong and weak. Under the strong tranquility property, the security level of a subject or

object does not change while the object is being referenced. The tranquility property serves two

purposes. First, it associates a subject with a security level. Second, it prevents, a subject from

reading data with a high security level, storing the data in memory, switching its level to a low

security level, and writing the contents of its memory to an object at that lower level.

Under the weak tranquility property labels are allowed to change, but never in a way that can

violate the defined security policy. It allows a session to begin in the lowest security level,

regardless of the user’s security level, and increased that level only if objects at higher security

levels are accessed. Once increased, the session security level can never be reduced, and all

objects created or modified take on the security level held by the session at the time when the

object was created or modified, regardless of its initial security level. This is known as the high

water mark principle.

Because of the constraints placed on the flow of information, MAC models prevent software

infected with Trojan horse from violating policy. Information can flow within the same security

level or higher, preventing leakage to a lower level. However, information can pass through a

covert channel in MAC, where information at a higher security level is deduced by inference,

such as assembling and intelligently combining information of a lower security level.

2.4 Chinese Wall

The Chinese Wall policy evolved to address conflict-of-interest issues related to consulting

activities within banking and other financial disciplines [Bre89]. The stated objective of the

Chinese Wall policy and its associated model is to prevent illicit flows of information that can

result in conflicts of interest. The Chinese Wall model is based on several key entities: subjects,

objects, and security labels. A security label designates the conflict-of-interest class and the

company dataset of each object.

The Chinese Wall policy is application-specific in that it applies to a narrow set of activities that

are tied to specific business transactions. Consultants or advisors are naturally given access to

proprietary information to provide a service for their clients. When a consultant gains access to

the competitive practices of two banks, for instance, the consultant essentially obtains insider

information that could be used to profit personally or to undermine the competitive advantage of

one or both of the institutions.

The Chinese Wall model establishes a set of access rules that comprises a firewall or barrier,

which prevents a subject from accessing objects on the wrong side of the barrier. It relies on the

consultant’s dataset to be logically organized such that each company dataset belongs to exactly

one conflict of interest class, and each object belongs to exactly one company dataset or the

dataset of sanitized objects within a specially designated, non-conflict-of-interest class. A subject

can have access to at most one company dataset in each conflict of interest class. However, the

choice of dataset is at the subject’s discretion. Once a subject accesses (i.e., reads or writes) an

object in a company dataset, the only other objects accessible by that subject lie within the same

dataset or within the datasets of a different conflict of interest class. In addition, a subject can

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 10

write to a dataset only if it does not have read access to an object that contains unsanitized

information (i.e., information not treated to prevent discovery of a corporation's identity) and is

in a company dataset different from the one for which write access is requested.

The following limitations in the formulation of the Chinese Wall model have been noted

[San92]: a subject that has read objects from two or more company datasets cannot write at all,

and a subject that has read objects from exactly one company dataset can write only to that

dataset. These limitations occur because subjects include both users and processes acting on

behalf of users, and can be resolved by interpreting the model differently to differentiate users

from subjects [San92]. The policy rules of the model are also more restrictive than necessary to

meet the stated conflict-of-interest avoidance objective [Sha13]. For instance, as already

mentioned, once a subject has read objects from two or more company datasets, it can no longer

write to any data set. However, if the datasets reside in different conflict-of-interest classes, no

violation of the policy would result were the subject allowed to write to those objects. That is,

while the policy rules are sufficient to preclude a conflict of interest from occurring, they are not

necessary from a formal logic perspective, since actions that do not incur a conflict of interest are

also prohibited by the rules.

2.5 Role Based Access Control

The Role Based Access Control (RBAC) model governs the access of a user to information

through roles for which the user is authorized to perform. RBAC is a more recent access control

model than those described above. It is based on several entities: users (U), roles (R),

permissions (P), sessions (S), and objects (O). A user represents an individual or an autonomous

entity of the system. A role represents a job function or job title that carries with it some

connotation of the authority held by a members of the role. Access authorizations on objects are

specified for roles, instead of users. A role is fundamentally a collection of permissions to use

resources appropriate to conduct a particular job function, while a permission represents a mode

of access to one or more objects of a system. Objects represent the protected resources of a

system.

Users are given authorization to operate in one or more roles, but must utilize a session to gain

access to a role. A user may invoke one or more sessions, and each session relates a user to one

or more roles. The concept of a session within the RBAC model is equivalent to the more

traditional notion of a subject discussed earlier. When a user operates within a role, it acquires

the capabilities assigned to the role. Other roles authorized for the user, which have not been

activated, remain dormant and the user does not acquire their associated capabilities. Through

this role activation function, the RBAC model supports the principle of least privilege, which

requires that a user be given no more privilege than necessary to perform a job.

Another important feature RBAC is role hierarchies, whereby one role at a higher level can

acquire the capabilities of another role at a lower level, through an explicit inheritance relation.

A user assigned to a role at the top of a hierarchy, also is indirectly associated with the

capabilities of roles lower in the hierarchy and acquires those capabilities as well as those

assigned directly to the role. Standard RBAC also provides features to express policy constraints

involving Separation of Duty (SoD) and cardinality. SoD is a security principle used to

formulate multi-person control policies in which two or more roles are assigned responsibility

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 11

for the completion of a sensitive transaction, but a single user is allowed to serve only in some

distinct subset of those roles (e.g., not allowed to serve in more than one of two transaction-

sensitive roles). Cardinality constraints that limit a role’s capacity to a fixed number of users,

have been incorporated into SoD relations in standard RBAC.

Two types of SoD relations exist: static separation of duty (SSD) and dynamic separation of duty

(DSD). SSD relations place constraints on the assignments of users to roles, whereby

membership in one role may prevent the user from being a member of another role, and thereby

presumably forcing the involvement of two or more users in performing a sensitive transaction

that would involve the capabilities of both roles. Dynamic separation of duty relations, like SSD

relations, limit the capabilities that are available to a user, while adding operational flexibility, by

placing constraints on roles that can be activated within a user’s sessions. As such, a user may

be a member of two roles in DSD, but unable to execute the capabilities that span both roles

within a single session.

Certain access control models may be simulated or represented by another. For example, MAC

can simulate RBAC if the role hierarchy graph is restricted to a tree structure rather than a

partially ordered set [Kuh98]. RBAC is also policy neutral, and sufficiently flexible and

powerful enough to simulate both DAC and MAC [Osb00]. Prior to the development of RBAC,

MAC and DAC were considered to be the only classes of models for access control; if a model

was not MAC, it was considered to be a DAC model, and vice versa.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 12

3. Policy Machine Framework

The policy machine (PM) model is a redefinition of access control in terms of a standardized and

generic set of relations and functions that are reusable in the expression and enforcement of

policies. Its objective is to provide a unifying framework to support a wide range of policies and

policy combinations through a single mechanism. An important characteristic of the PM is that

it is inherently policy neutral. That is, no particular security policy is embodied in the PM

model. Instead, the model serves a vehicle for expressing a wide range of security polices and

enforcing them for a specific system through a precise specification of policy elements and

relationships.

The PM can be thought of as a logical ‘‘machine” comprised of a fixed set of relations and

functions between policy elements, which is used to render access control decisions via reference

mediation. Policies are attribute based and capable of expressing and enforcing non-

discretionary and discretionary policies [Fer05, Fer11]. Each of the access control models

discussed in the previous chapter can be represented in terms of the PM model’s data elements

and relations, such that an authorization decision rendered by the PM framework would be the

same decision as that rendered by the access control model. The simultaneous enforcement of

multiple policies, including reconciliation of policy conflicts, is an inherent part of the PM

framework [Fer11].

Policy elements not only represent the users and objects of a system, but also attributes of those

elements that have an effect on access control decisions. Several key relations provide a frame

of reference for defining and interpreting a system policy in terms of the policy elements

specified. These relations include assignments that link together policy elements into a

meaningful structure, associations that are used to define authorizations for classes of users,

prohibitions that are used to define what essentially are negative authorizations, and obligations

that are used to perform administrative actions automatically based on event triggers. Several

key functions also aid in making access control decisions and enforcing expressed policies. The

remaining sections of this chapter discuss in detail core policy elements, relations, and functions

that comprise the PM model.

3.1 Core Policy Elements

The basic data elements of the PM include authorized users (U), processes (P), operations (Op),

access rights (AR), and objects (O). Users are individuals that have been authenticated by the

system. A process is a system entity, with memory, and operates on behalf of a user. Users

submit access requests through processes. The PM treats users and processes as independent but

related entities. Most other access control models use the term subject instead of process, while

a few others use subject to mean both process and user.

Processes can issue access requests, have exclusive access to their own memory, but none to any

other process. Processes communicate and exchange data with other processes through a

physical medium, such as the system clipboard or sockets. A user may be associated with one or

more processes, while a process is always associated with just one user. The function

process_user(p) returns the user u ∈ U associated with process p ∈ P. A user may create and run

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 13

various processes from within a session. The PM model permits only one session per user,

however.

Objects are system entities that are subject to control under one or more defined policies. Both

users and objects have unique identifiers within the system. The set of objects reflect

environment-specific entities needing protection, such as files, ports, clipboards, email messages,

records and fields. The selection of entities included in this set is based on the protection

requirements of the system. Included in the set of objects are also policy elements and relations

needed by the PM to represent the authorization structure.

Operations denote actions that can be performed on the contents of objects that represent

resources or on PM data elements and relations that represent policy. The entire set of system

operations, SysOp, comprises a set of operations on object resources, Op, and a set of

administrative operations on the data elements and relations, AOp. Common resource operations

include read and write, for example.1 Resource operations can also be defined specifically for

the environment in which the PM is implemented. Administrative operations on the other hand

pertain only to the creation and deletion of PM data elements and relations, and are a fixed part

of the PM framework.

To be able to carry out an operation, the appropriate access rights are required. As with

operations, two types of access rights apply: non-administrative access rights, AR, and

administrative access rights, AAR. Non-administrative resource operations are covered in the

remainder of this chapter and administrative operations are covered in the next chapter.

Other additional important elements of the model include policy classes (PC) and user and object

attributes (UA and OA). A policy class is used to organize and distinguish between distinct

types of policy being expressed and enforced. A policy class can be thought of as a container for

policy elements and relationships that pertain to a specific policy. User and object attributes play

a similar role. User and object attributes are policy elements used to organize and distinguish

between distinct classes of users and objects respectively. They can also be thought of as

containers for users and objects respectively. Every object also serves as an object attribute

within the PM model; i.e., O is a subset of OA. The way in which policy elements can be

assembled and used to represent policy is covered in subsequent sections.

Notation for Basic Model Elements. The basic elements of the model discussed so far
can be defined more formally as shown below.

▪ U: A finite set U of authorized users; u or u1, u2, … denote a member of U, unless

otherwise specified.

1 Besides read and write, other resource operations on objects may exist, which are dependent on the computing environment.

Examples include write-append, which allows an object to be expanded, but does not allow the previous contents to be changed,

and execute, which allows the content of an object to be run as an executable, but does not allow it to be read. For simplicity, the

more general and encompassing forms of input/output, read and write, are used exclusively throughout this report.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 14

▪ P: A finite set of system processes; p or p1, p2, … denote a member of P, unless
otherwise specified.

▪ Op: A finite set of resource operations; op or op1, op2, … denote a member of Op,
unless otherwise specified.

▪ AOp: A finite set of administrative operations; aop or aop1, aop2, … denote a member of
AOp, unless otherwise specified.

▪ SysOp: The finite set of administrative and non-administrative operations for a system.

 SysOp = Op ⋃ AOp

▪ AR: A finite set of access rights; aar or aar1, aar2, … denote a member of AR, unless
otherwise specified.

▪ O: A finite set of protected objects; o or o1, o2, … denote a member of O, unless
otherwise specified.

 O ⊆ OA

▪ PC: A finite set of policy classes; pc or pc1, pc2, … denote a member of PC, unless
otherwise specified.

▪ UA: A finite set of user attributes; ua or ua1, ua2, … denote a member of UA, unless
otherwise specified.

▪ OA: A finite set of object attributes; oa or oa1, oa2, … denote a member of OA, unless
otherwise specified.
 OA ⊇ O

▪ Process-to-User Mapping: The function process_user from domain P to codomain U,

such that u = process_user(p)  p ∈ P is a process operating on behalf of user u ∈ U.
 ∀p∈P, ∃!u∈U: u = process_user(p)

3.2 Assignments and Relations between Elements

Assignments are the means used to express a relationship between users and user attributes,

objects and object attributes, user (object) attributes and user (object) attributes, and user (object)

attributes and policy classes. The assignment relationship is a binary relation on the set of policy

elements, PE = U ⋃ UA ⋃ OA ⋃ PC, where O ⊆ OA. An individual assignment can be

expressed as either (x, y)∈ ASSIGN or x ASSIGN y, on elements x, y of PE. The assignment

relation is defined as follows:

ASSIGN ⊆ (U×UA) ⋃ (UA×UA) ⋃ (OA×OA) ⋃ (UA×PC) ⋃ (OA×PC)

The assignment relation must satisfy the following properties:

 It is irreflexive; i.e., for all x, y in PE, x ASSIGN y  x ≠ y.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 15

 It is acyclic; i.e., there does not exist a finite sequence of distinct elements x1,x2,...,xn in

PE, such that n > 1 ⋀ xi ASSIGN xi+1 for i = 1,2,...,n-1 ⋀ xn ASSIGN x1.

 A sequence of assignments (i.e., a path) must exist from every element in U, UA, and OA

to some element in PC; i.e., for all elements w in U ⋃ UA ⋃ OA, there exists a sequence

of distinct elements x1,x2,...,xn in PE, such that n > 1 ⋀ x1 = w ⋀ xn∈ PC ⋀ xi ASSIGN

xi+1 for i = 1,2,...,n-1.

 An object attribute cannot be assigned to an object; i.e., for all x ∈ OA, an assignment x

ASSIGN y implies that y ∉ O.

The assignment relation can be represented as a directed graph or digraph G = (PE, ASSIGN),

where PE are the vertices of the graph, and each tuple (x, y) of ASSIGN represents a direct edge

or arc that originates at x and terminates at y. A digraph of policy elements and the assignments

among them is also referred to as a policy element diagram within this report and is a key

concept underlying the PM model. A policy graph is typically oriented in a top-down fashion

with the head of an arrow (i.e., its termination) pointing downward, as shown in the simplified

policy element diagram of Figure 2, which illustrates assignments between each type of policy

element.

Figure 2: Simplified Policy Element Diagram

The transitive closure of the relation ASSIGN, denoted as ASSIGN+, provides a convenient way

to determine whether one element in PE is reachable from another through a series of one or

more assignments. The expression x ASSIGN+ y denotes that y is reachable from x. For all x

and y in PE, (x, y) is a member of ASSIGN+, if and only if (iff) there exists a sequence of distinct

elements x1,x2,...,xn in PE, such that n > 1 ⋀ xi ASSIGN xi+1 for i = 1,2,...,n-1 ⋀ x=x1 ⋀ y=xn .

For example, in Figure 2, ua12 is reachable from u1, u2, ua1, ua2, which can be expressed as u1

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 16

ASSIGN+ ua12, u2 ASSIGN+ ua12, ua1 ASSIGN+ ua12, ua2 ASSIGN+ ua12. Reachability is

synonymous with the concept of containment. For any x and y in PE, x is said to be contained

by y, or y is said to contain x, iff x ASSIGN+ y. In the previous example involving ua12, ua12 can

be said to contain u1, u2, ua1, ua2.

Occasionally, it is useful to express that one element in PE is reachable from another through a

series of zero or more assignments. The reflexive and transitive closure of the relation ASSIGN,

denoted as ASSIGN*, provides a convenient way to represent this situation. That is, for any x

and y in PE, x ASSIGN* y is the equivalent of stating that y contains x or is itself the element x.

3.2.1 User, Object, and Attribute Relationships

A user may be assigned to one or more user attributes. The assignment u ASSIGN ua means that

the user u is assigned to or contained by the user attribute ua. It also denotes that user u takes on

or inherits the properties held or represented by the attribute ua. The properties of a user

attribute are defined as the capabilities for and prohibitions against accessing certain types of

objects.

Similarly, an object may be assigned to one or more object attributes through one or more object-

to-attribute assignments, represented as a binary relation from O to OA. The assignment o

ASSIGN oa means that that the object o is assigned to or contained by the object attribute oa and

takes on or inherits the properties held by the attribute oa. The properties of an object attribute

are defined as the capabilities and prohibitions allotted to users, which govern access to

contained objects (i.e., access modes allowed and denied to specific users).

3.2.2 Relationships among Attributes

A user (object) attribute may be assigned to one or more other user (object) attributes. Because

the assignment relation is acyclic, a series of assignments among attributes results in a

hierarchically ordered relationship. Assignments between user (object) attributes are by

definition restricted to attributes of the same type (i.e., either all user attributes or object

attributes). Therefore, no members of an object attribute to object attribute ordering can be in

common with those of a user attribute to user attribute ordering—they are mutually exclusive.

The user attribute to user attribute relation UAUA is a subrelation of the ASSIGN relation in

UA×UA, which is defined as (UA×UA)⋂ASSIGN. Every tuple of UAUA is also a tuple of

ASSIGN. That is, for all x and y in UA, x UAUA y, iff x ASSIGN y. The object attribute to

object attribute relation OAOA can be defined similarly. (OA×(OA-O))⋂ASSIGN is a

subrelation of ASSIGN in (OA×(OA-O) , such that, for all x and y in OA, x ASSIGN y, iff x

OAOA y. Several other subrelations of ASSIGN also exist, including user to user attribute

assignments, defined as (U×UA)⋂ASSIGN, user attribute to policy class assignments, defined

as (UA×PC)⋂ASSIGN, and object attribute to policy class assignments, defined as

(OA×PC)⋂ASSIGN.

Containment as it applies to UAUA and OAOA relations is of key importance. Containment

allows each attribute to inherit the properties held by every attribute that contains it. As

mentioned earlier, an attribute or other policy element x is said to be contained by another

attribute or policy element y, iff x ASSIGN+ y. For example, focusing exclusively on the object

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 17

attributes in Figure 2, the following expressions are true: oa1 ASSIGN+ oa20, oa2 ASSIGN+ oa20,

oa1 ASSIGN+ oa21, oa2 ASSIGN+ oa21, and oa20 ASSIGN+ oa21. That is, within the OAOA

relation, both oa1 and oa2 are contained by oa20 and inherit the properties of oa20, and oa1, oa2,

and oa20 are contained by oa21 and likewise inherit its properties.

Inheritance of properties within UAUA and OAOA relations also has an effect on the way users

and objects contained by those attributes are treated within the PM model. A user x that is

contained by user attribute y can gain the properties that are both assigned to and inherited by

attribute y. Similarly, an object x that is contained by object attribute y, can gain the properties

that are both assigned to and inherited by attribute y.

3.2.3 Policy Class Relationships

A user attribute or an object attribute may be assigned to one or more policy classes (e.g., ua

ASSIGN pc or oa ASSIGN pc). Properties that are assigned to a policy class are inherited by the

attributes assigned to it. As mentioned earlier, a policy class can be thought of as a container for

policy elements and relationships that pertain to a specific policy; every policy element is

contained by at least one policy class. Unlike attributes, however, a policy class cannot be

assigned to any other policy class.

Policy elements of one policy class can be defined to be mutually exclusive from those of

another policy class. That is, if a policy element x is contained by pc1, it is precluded from being

contained by pc2. Policy elements can also be defined to be inclusive of more than one policy

class. An access control policy can be characterized through a single policy class, multiple

mutually exclusive policy classes, or multiple non-mutually exclusive policy classes.

Notation for Element Relationships. The relationships among elements of the PM
model discussed so far can be defined more formally as shown below.

▪ PE: A finite set of policy elements, where PE ≝ U ⋃ UA ⋃ OA ⋃ PC (i.e., {U, UA, OA,
PC} is a partition on the set PE); pe or pe1, pe2, … denote arbitrary members of PE,
unless otherwise specified.

▪ Assignment: The binary relation ASSIGN in the set PE, such that the following hold:

 ∙ ASSIGN ⊆ (U×UA) ⋃ (UA×UA) ⋃ (OA×OA) ⋃ (UA×PC) ⋃ (OA×PC)

 ∙ the relation is irreflexive; i.e., x,y ∈ PE: (x ASSIGN y  x ≠ y)

 ∙ the relation is acyclic; i.e.,  a finite sequence of distinct elements
 x1,x2,...,xn ∈ PE, such that n > 1 ⋀ xi ASSIGN xi+1 for i = 1,2,...,n-1 ⋀ xn ASSIGN x1

 ∙ a path exists from every element in U, UA, and OA to some element in PC; i.e.,

 w ∈ (U ⋃ UA ⋃ OA), ∃ a finite sequence of distinct elements x1,x2,...,xn ∈ PE,
 such that n > 1 ⋀ x1=w ⋀ xn∈PC ⋀ xi ASSIGN xi+1 for i = 1,2,...,n-1
 ∙ assignments to an object from an object attribute are precluded;

 i.e., x ∈ OA: x ASSIGN y  y ∉ O

▪ Policy Element Diagram: A policy element diagram is an ordered pair (PE, ASSIGN)
where ASSIGN is an assignment relation in the set PE.

▪ Containment: The binary relation ASSIGN+; i.e., ASSIGN+ is the transitive closure of

the assignment relation ASSIGN.

 ∙ ASSIGN ⊆ ASSIGN+

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 18

 ∙ x, y ∈ PE: ((x, y) is a member of ASSIGN+  ∃ a finite sequence of

 distinct elements pe1,pe2,...,pen ∈ PE, such that (n > 1 ⋀
 pei ASSIGN pei+1 for i = 1,2,...,n-1 ⋀ x=pe1 ⋀ y=pen)

 ∙ x is contained by y ≝ x,y ∈ PE ⋀ x ASSIGN+ y

 ∙ y contains x ≝ x,y ∈ PE ⋀ x ASSIGN+ y

The notation x ASSIGN* y is a shorthand expression of the condition that y is reachable
from x through a series of zero or more applications of the assignment relation (i.e., the
reflexive and transitive closure of ASSIGN).

User Oriented

▪ User-to-User-Attribute Assignment: The binary relation UUA over the policy elements

(U×UA)⋂ASSIGN is a subrelation of the binary relation ASSIGN.

 ∙ UUA = (U×UA)⋂ASSIGN ⊆ ASSIGN

 ∙ x∈U, y∈UA: (x UUA y  x ASSIGN y)

▪ User-Attribute-to-User-Attribute Assignment: The binary relation UAUA over the

policy elements (UA×UA)⋂ASSIGN is a subrelation of the binary relation ASSIGN.
 ∙ UAUA = (UA×UA)⋂ASSIGN ⊆ ASSIGN

 ∙ x∈UA, y∈UA: (x UAUA y  x ASSIGN y)
 ∙ user attribute x inherits the properties of attribute y ≝ x ∈ UA ⋀ y ∈ UA ⋀

 x ASSIGN+ y

▪ User-Attribute-to-Policy-Class Assignment: The binary relation UAPC over the

policy elements (UA×PC)⋂ASSIGN is a subrelation of the binary relation ASSIGN.
 ∙ UAPC = (UA×PC)⋂ASSIGN ⊆ ASSIGN

 ∙ x∈UA, y∈PC: (x UAPC y  x ASSIGN y)

 ∙ attribute x inherits the properties of policy class y ≝ x ∈ UA ⋀ y ∈ PC ⋀ x ASSIGN+ y

Object Oriented

▪ Object-Attribute-to-Object-Attribute Assignment: The binary relation OAOA over the

policy elements (OA×OA)⋂ASSIGN is a subrelation of the binary relation ASSIGN.
 ∙ OAOA = (OA×(OA – O))⋂ASSIGN ⊆ ASSIGN

 ∙ x∈OA, y∈(OA – O): (x OAOA y  x ASSIGN y)
 ∙ object attribute x inherits the properties of attribute y ≝ x ∈ OA ⋀ y ∈ OA ⋀

 x ASSIGN+ y

▪ Object-Attribute-to-Policy-Class Assignment: The binary relation OAPC over the

policy elements (OA×PC)⋂ASSIGN is a subrelation of the binary relation ASSIGN.
 ∙ OAPC = (OA×PC)⋂ASSIGN ⊆ ASSIGN

 ∙ x∈OA, y∈PC: (x OAPC y  x ASSIGN y)
 ∙ attribute x inherits the properties of policy class y ≝ x ∈ OA ⋀ y ∈ PC ⋀

 x ASSIGN+ y

3.3 Associations and Privileges

Associations define relationships that involve the authorization of access rights between policy

elements. Privileges are derived from associations and as discussed later in this section, are

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 19

shaped in part by the attribute to attribute assignments (i.e., UAUA and OAOA relations) defined

for a policy.

3.3.1 Associations

Associations are policy settings that govern which users are authorized to access which objects

and exercise which access rights. More specifically, associations represent a ternary relation

between the policy elements UA, ARs, and OA, where ARs = 2AR – {∅} (i.e., the set of all

subsets of AR, except for the empty set). Associations are normally formed and rescinded

through administrative commands issued with an according interface of the PM.

The ternary relation ASSOC ⊆ UA × ARs × OA defines the set of possible associations within a

policy specification. An individual triple (ua, ars, oa) of ASSOC, where ars ∈ ARs represents a

set of access rights, can be denoted as ua—ars—oa. Within one policy class, an association ua—

ars—oa specifies that all users contained by ua possess the authority denoted by ars over all

objects contained by oa. Note that associations affecting a user’s access rights over objects can

occur at various levels within an attribute hierarchy. Similarly, associations that affect an

object’s accessibility by users can also occur at various levels.

Associations can be formed within the PM and interpreted using either an access list or a

capability list orientation. That is, an individual association can be represented from the

perspective of a user or object attribute, using a pair of binary relations as illustrated in Figure 3.

The top of Figure 3(a) illustrates the ternary relation, while the bottom, left side of Figure 3(b)

illustrates the inherent access list-oriented representation (i.e., the implicit representation drawn

from an object attribute’s perspective), and the right side of Figure 3(b) illustrates the inherent

capability-oriented representation (i.e., the implicit representation drawn from a user attribute’s

perspective). The ability to form associations from either orientation allows flexibility when

adapting PM model abstractions to a specific system implementation environment. Care should

be taken, however, to maintain one orientation consistently throughout.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 20

Figure 3: Associations and Alternative Representations

3.3.2 Inheritance and Attribute Properties

Attribute hierarchies affect the interpretation of associations. The relationships formed through

associations between attributes are subject to inheritance. As mentioned above, the properties of

an attribute include not only those directly held by the attribute, but also the properties inherited

from every attribute in which it is contained. Stated slightly differently, the properties of an

attribute include not only those directly held by the attribute, but also the properties inherited

from every attribute that contains it.

Figure 4 gives a simple example of an authorization graph containing attribute hierarchies, with

policy elements U = {u1, u2, u3}, O = {o1, o2, o3}, UA = {Group1, Group2, Division}, OA =

{Project1, Project2, Projects}, and PC = {OU}. An authorization graph is simply a policy

element diagram annotated with associations and other relationships that exist between policy

elements. Associations are illustrated using dotted lines between the elements involved in each

association. The following three associations are shown in Figure 4: (Group1, {w}, Project1),

(Group2, {w}, Project2), and (Division, {r}, Projects). Looking at the properties of each user

attribute in the hierarchy that are assigned or inherited from the defined associations, the

following can be determined:

 Group1 is assigned the capability of ({w}, Project1) and inherits the capability of ({r},

Projects) from Division.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 21

 Group2 is assigned the capability of ({w}, Project2) and inherits the capability of ({r},

Projects) from Division.

 Division is assigned the capability of ({r}, Projects), but inherits no capabilities, since it

is not contained by any another user attribute.

Figure 4: Simple Authorization Graph

For this same example, the properties of each object attribute in the hierarchy that are assigned or

inherited from the defined associations can also be determined. That is, rather than a list of

inherent capabilities, a list of inherent access entries can be determined for each object attribute.

 Project1 is assigned the access entry (Group1, {w}), and inherits the access entry

(Division, {r}) from Projects.

 Project2 is assigned the access entry (Group2, {w}), and inherits the access entry

(Division, {r}) from Projects.

 Projects is assigned the access entry (Division, {r}), but inherits no access entries from

another object attribute.

While it is relatively easy to determine the assigned and inherited properties of attributes for the

simple example given in Figure 4, it would be considerably more difficult to illustrate and

analyze a more realistic example. The interactions between vertical assignment relations and

horizontal association relations increase in complexity quickly as more elements and their

relationships with other elements are added to an authorization graph.

3.3.3 Derived Privileges

A privilege specifies a relationship between a user, an operation, and an object. Privileges are

derived from higher level relations, namely associations between and assignments among

attributes. That is, every privilege originates from an association and the containment properties

of the user and object attributes of that association, which are designated through assignments.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 22

The ternary relation PRIV ⊆ U × AR × O defines the set of possible privileges within a policy

specification. A generic individual privilege of the form (u, ar, o) denotes that user u has the

authority to exercise access rights ar on object o. Within a policy consisting of a single policy

class, a triple (u, ar, o) is a privilege, iff there exists a user attribute ua with an assigned or

inherited capability (ars, oa), such that u ASSIGN ua, ar ∈ ars, and o ASSIGN* oa.

A privilege can also be derived from the object’s perspective. That is, a triple (u, ar, o) is a

privilege, iff there exists an object attribute oa with an assigned or inherited access entry (ua,

ars), such that o ASSIGN* oa, u ASSIGN+ ua, and ar ∈ ars. Privileges can also be derived in a

more straightforward, perspective-independent fashion for policies consisting of a single policy

class. Specifically, the triple (u, ar, o) is a privilege, iff there exists an association (ua, ars, oa),

such that user u ASSIGN+ ua, ar ∈ ars, and o ASSIGN* oa. Policies that involve multiple policy

classes require a small adjustment to privilege derivation, which is discussed later in Chapter 6.

Looking again at the example in Figure 4, the entire set of privileges for the authorization graph

can be enumerated from the user’s perspective and the capabilities of attributes directly assigned

to it, as follows:

 u1 is assigned to Group1, which has the inherent capabilities of ({w}, Project1) and ({r},

Projects). Since Project1 contains o1 and o2 and Projects contains o1, o2, and o3, the

derived privileges involving u1 are (u1, w, o1), (u1, w, o2), (u1, r, o1), (u1, r, o2), and (u1, r,

o3).

 u2 is assigned to Group2, which has the inherent capabilities of ({w}, Project2) and ({r},

Projects). Since Project2 contains o3 and Projects contains o1, o2, and o3, the derived

privileges involving u2 are (u2, w, o3), (u2, r, o1), (u2, r, o2), and (u2, r, o3).

 u3 is assigned to Division, which has the inherent capability of ({r}, Projects). Since

Projects contains o1, o2, and o3, the derived privileges involving u3 are (u3, r, o1), (u3, r,

o2), and (u3, r, o3).

As mentioned earlier, the same set of privileges enumerated above can be derived in a similar

fashion from the authorization graph, taking the object’s perspective and the properties of

attributes directly assigned to it. While it is possible to represent the derived privileges of any

authorization graph involving associations as an access matrix, the PM model allows groups of

users and objects to be organized collectively in a manner intended to facilitate administration.

Similar to inherent properties of associations, both access entry and capability orientations apply

also to privileges. A user u may access an object via its capability, (ar, o), iff the privilege (u, ar,

o) exists. Likewise, a user may access an object o via the object’s access entry, (u, ar), iff a

privilege (u, ar, o) exists.

Although privileges can be envisaged in terms of user capabilities or object access entries, the

reference mediation function controls access in terms of processes. That is, the reference

mediation function grants the process p the permission to execute an access request <op, o>p, iff

the requisite privilege (u, ar, o) exists, where u = process_user(p). It is important to note that for

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 23

non-administrative access requests, the variable op designates a single abstract resource

operation on the object, while in a privilege, ar designates a corresponding access right that

authorizes an unlimited number of abstract resource operations on an object.

To determine the requisite privilege needed for an access request <op, o>p, reference mediation

requires a mapping from the operation and object in question to the set of capabilities that are

required for the process to carry out the request. The mapping Req_Cap(op, o) returns the

singleton set of capabilities that the process must hold to carry out the access request. The

reference mediation function grants the process p the permission to execute a request <op, o>p,

iff process p holds all the capabilities returned by Req_Cap(op, o).

Notation for Associations and Privileges. The relationships among elements of the
PM model formed through associations and privileges can be defined more formally as
shown below.

▪ ARs: A finite set of all subsets of access rights defined in AR, excluding the empty set;
ars or ars1, ars2, … denote a member of ARs, unless otherwise specified.

 ARs = 2AR – {∅}

▪ Associations: The ternary relation ASSOC from UA to ARs to OA.

 ASSOC ⊆ UA×ARs×OA

▪ Inherent Capabilities: The partial function ICap from UA to 2(ARsxOA).

 ∙ ICap ⊆ UA x 2(ARs×OA)

 ∙ ua∈UA, ars∈ARs, oa∈OA: ((ars, oa) ∈ ICap(ua)  (ua, ars, oa) ∈ ASSOC)

▪ Inherent Access Entries: The partial function IAE from OA to 2(UAxARs).

 ∙ IAE ⊆ OA × 2(UA×ARs)

 ∙ ua∈UA, ars∈ARs, oa∈OA: ((ua, ars) ∈ IAE(oa)  (ua, ars, oa) ∈ ASSOC)

▪ Privileges: The ternary relation PRIV from U to AR to O.

 ∙ PRIV ⊆ U×AR×O

 ∙ u∈U, ar∈AR, o∈O: ((u, ar, o) ∈ PRIV  ∃ars∈ARs, ∃ua∈UA, ∃oa∈OA:

 ((ua, ars, oa) ∈ ASSOC ⋀ u ASSIGN+ ua ⋀ ar ∈ ars ⋀ o ASSIGN* oa))

▪ Access Entries: The function AE from O to 2(U×AR).

 ∙ AE ⊆ O × 2(U×AR)

 ∙ u∈U, ar∈AR, o∈O: ((u, ar) ∈ AE(o)  (u, ar, o) ∈ PRIV)

▪ Capabilities: The function Cap from U to 2(AR×O).

 ∙ Cap ⊆ U × 2(AR×O)

 ∙ u∈U, ar∈AR, o∈O: ((ar, o) ∈ Cap(u)  (u, ar, o) ∈ PRIV)

▪ Process Capabilities: The function PCap from P to 2(AR×O).

 ∙ PCap ⊆ P × 2(AR×O)

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(p)  (process_user(p), u, ar, o) ∈ PRIV)

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 24

▪ Access Request: A finite set of possible process access requests.

 ∙ AReq ⊆ P × (Op×O)

 ∙ (p, (op, o)) ∈ AReq ≝ <op, o>p

▪ Required Capabilities: The partial binary function ReqACap from Op × O to 2(AR×O),

such that op∈Op, o∈O: ((ar, o) ∈ ReqACap(op, o)  (ar,o) is a requisite capability
needed to perform the operation op on the object o).
 ReqACap ⊆ (Op×O) × 2(AR×O)

▪ Reference Mediation: The function from domain AReq to codomain {grant, deny}.

 p∈P, op∈Op, o∈O: (reference_mediation(<op, o>p) = grant 

 ar∈AR: ((ar, o)∈ReqCap(op, o)  (ar, o) ∈ PCap(p)));
 otherwise, reference_mediation(<op, o>p) = deny

3.4 Prohibitions

Prohibitions define relationships that involve the suppression of access rights between policy

elements. They can be thought of as the antithesis of associations. Two distinct, but related

types of fundamental prohibitions exist: user deny and process deny. User and process denies

are generally referred to as prohibitions because they override privileges that would otherwise

allow access to an object occur. That is, prohibitions denote an effective set of privileges that a

specific user or process is precluded from exercising, regardless of whether any of the privileges

involved actually can or cannot be derived for the user or process in question. Prohibitions can

be formed and rescinded through administrative commands issued with an according interface of

the PM, similar to associations.

A couple of notational conventions help to facilitate the discussion of prohibitions. Let pe

denote the set of all objects contained by the policy element pe (i.e., pe = {x: x∈O and x

ASSIGN+ pe}). The complement of pe with respect to the set of all objects, O, is denoted by

pe (i.e., pe = O – pe). The notation pe and pe are respectively called the object range and

complementary object range of a policy element. They are used below to define two classes of

prohibitions that involve disjunctive and conjunctive relationships, and the objects affected by

them.

The quaternary relation U_deny_disjunctive ⊆ U × ARs × OAs × OACs, where OAs = OACs =
2OA, defines the set of user-based disjunctive prohibitions for a policy specification. An

individual tuple (u, ars, oas, oacs) ∈ U_deny_disjunctive, where u ∈ U, ars ∈ ARs, oas ∈ OAs,
oacs ∈ OACs, and oas ⋃ oacs ≠ ∅, denotes that any process p executing on behalf of user u (i.e.,

u = process_user(p)) cannot exercise the access rights in ars on any object that is contained by at

least one of the object attributes in oas (i.e., the inclusory object attribute set), or not contained

by at least one of the object attributes in oacs (i.e., the exclusory object attribute set). More

precisely, the set of objects affected by a disjunctive user deny is the union of oai
, for all oai in

oas, and oacj
, for all oacj in oacs (i.e., the set (oa1

 ⋃ oa2
 … ⋃ oan

) ⋃ (oac1
 ⋃ oac2

 … ⋃

oacm
)).

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 25

A complementary relation to U_deny_disjunctive is also defined for the PM model. An

individual tuple (u, ops, oas, oacs) of the quaternary relation U_deny_conjunctive ⊆ U × ARs ×

OAs × OACs denotes that any process p executing on behalf of user u cannot exercise the access

rights in ars on any object that is contained by all of the attributes in oas, and is also not

contained by any of the object attributes in oacs. As specified above, oas ⋃ oacs ≠ ∅. Stated

more precisely, the set of objects affected by a conjunctive user deny is the intersection of oai
,

for all oai in oas, and oacj
, for all oacj in oacs (i.e., the set (oa1

 ⋂ oa2
 … ⋂ oan

) ⋂ (oac1
 ⋂

oac2
 … ⋂ oacm

)).

Process-based prohibitions are defined similarly to user-based prohibitions. The relation

P_deny_disjunctive ⊆ P × ARs × OAs × OACs defines the set of process-based disjunctive

prohibitions. A tuple (p, ars, oas, oacs) ∈ P_deny_disjunctive denotes that the process p cannot

exercise the access rights in ars on any object that is contained by at least one of the object

attributes in oas, or not contained by at least one of the object attributes in oacs.

The conjunctive form of a prohibition also exists for process-based prohibitions. The relation

P_deny_conjunctive ⊆ P × ARs × OAs × OACs defines the set of process-based conjunctive

prohibitions. A tuple (p, ars, oas, oacs) ∈ P_deny_conjunctive denotes that the process p cannot

exercise the access rights in ars on any object that is contained by all of the attributes in oas, and

is also not contained by any of the object attributes in oacs. Note that if all existing prohibitions

for a user are process-based prohibitions that apply to only a single user process, it may be

possible for the user to perform prohibited accesses through another of its processes, presuming

that the appropriate associations are defined that would allow them. This situation can be easily

remedied through the use of a user-based prohibition, whose scope is broader than a single

process.

Besides user and process-based prohibitions, other types of useful prohibitions can be defined,

such as the following pair that are based on user attribute. The quaternary relation

UA_deny_disjunctive ⊆ UA × ARs × OAs × OACs defines the set of user attribute-based

disjunctive prohibitions, and the quaternary relation UA_deny_conjunctive ⊆ UA × ARs × OAs

× OACs defines the set of user attribute-based conjunctive prohibitions. A tuple (ua, ars, oas,

oacs) ∈ UA_deny_disjunctive denotes that any process p, executing on behalf of some user u

that is contained by ua, cannot exercise the access rights in ars on any object that is contained by

at least one of the object attributes in oas, or not contained by at least one of the object attributes

in oacs. Similarly, a tuple (ua, ars, oas, oacs) ∈ UA_deny_conjunctive denotes that any process

p, executing on behalf of some user u that is contained by ua, cannot exercise the access rights in

ops on any object that is contained by all of the attributes in oas, and is also not contained by any

of the object attributes in oacs.

The disjunctive and conjunctive forms of prohibitions allow complex expressions to be specified,

which delineate the objects targeted by a prohibition. In practice, most policies typically require

the use of only simple expressions in prohibitions. For example, the sets oas and oacs may each

be a singleton and contain only one member, or one of the sets may be the empty set and the

other a singleton. However, the capabilities that are defined are intended to meet the demands of

more complex policies that might arise. While the range of expressions is substantial, limitations

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 26

do exist, which may necessitate slight adjustments to the policy graph to be able to capture a

prohibition-related policy requirement adequately.

Prohibitions take precedence over any defined associations and derived privileges during

reference mediation. An access request to an object, <op, o>p, is granted to a process acting on

behalf of the user, iff the appropriate associations are defined that allow such access, and there is

not a prohibition for a user attribute containing that user, or for that user or process, on the

requested object, which countermands the access operation in question. If such a prohibition

does exist, access is denied.

To determine the disposition of an access request, reference mediation requires a mapping from

the operation and object in question to the set of capabilities that are required for the process to

carry out the request, barring any prohibitions to the contrary. The mapping Req_Cap(op, o)

returns the set of capabilities that the process must hold to carry out the access request. The

reference mediation function grants the process p the permission to execute a request <op, o>p,

iff process p holds all the capabilities returned by Req_Cap(op, 0). That is, when prohibitions

apply, the reference mediation function grants the process p permission to execute a request <op,

o>p, iff for some u = process_user(p), the following conditions hold:

 The privilege (u, ar, o) exists, where (ar, o) ∈ ReqCap(op, o).

 There do not exist prohibitions (p, ars, oas, oacs) ∈ P_deny_disjunctive or (u, ars, oas,

oacs) ∈ U_deny_disjunctive, such that ar ∈ ars and for some member x of oas, o ∈ x, or

for some member y of oacs, o ∈ y.

 There do not exist prohibitions (p, ars, oas, oacs) ∈ P_deny_conjunctive or (u, ars, oas,

oacs) ∈ U_deny_conjunctive, such that ar ∈ ars and for all members x of oas, o ∈ x, and

for all members y of oacs, o ∈ y.

 There do not exist prohibitions (ua, ars, oas, oacs) ∈ UA_deny_disjunctive, such that ar ∈

ars, u ASSIGN+ ua, and for some member x of oas, o ∈ x, or for some member y of

oacs, o ∈ y.

 There do not exist prohibitions (ua, ars, oas, oacs) ∈ UA_deny_conjunctive, such that ar

∈ ars, u ASSIGN+ ua, and for all members x of oas, o ∈ x, and for all members y of

oacs, o ∈ y.

Otherwise, the requested access is denied.

A user-based prohibition is persistent and remains in existence until it is rescinded through an

administrative action. A user-based prohibition cannot be partially rescinded and must be

rescinded in its entirety. That is, even if a subset of a prohibition’s affected privileges needs to

be retained, the entire prohibition still must be rescinded and replaced with new prohibition for

the remaining subset that are still in effect. Process-based prohibitions are usually formed

through predefined rules known as obligations, which are executed automatically based on event

occurrence. A process-based prohibition is less enduring and handled differently than a user-

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 27

based prohibition; once the process terminates, the prohibition no longer has applicability and is

rescinded automatically by the PM.

Notation for Prohibitions. The relationships among elements of the PM model affected
by prohibitions can be defined more formally as shown below.

▪ OAs: The finite set of all subsets of object attributes defined in OA; oas or oas1, oas2, …
denote a member of OAs, unless otherwise specified.
 OAs = 2OA

▪ OACs: The finite set of all subsets of object attributes defined in OA; oacs or oacs1,
oacs2, … denote a member of OAs, unless otherwise specified.

 OACs = 2OA

▪ Object Range of a Policy Element: The set of objects contained by a policy element.

 pe∈PE: pe ≝ {x: x∈O ⋀ x ASSIGN+ pe}.

▪ Complementary Object Range of a Policy Element: The set of objects not contained
by a policy element.

 pe∈PE: pe ≝ O–pe.

▪ User Deny Disjunctive Prohibition: The quaternary relation U_deny_disjunctive from
U to ARs to OAs to OACs.

 ∙ U_deny_disjunctive ⊆ U×ARs×OAs×OACs

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(op, o) ⋀ ∃ars∈ARs, ∃oas∈OAs,
 ∃oacs∈OACs: ((process_user(p), ars, oas, oacs)∈U_deny_disjunctive ⋀

 ar∈ars ⋀ (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa)) 
 reference_mediation(<op, o>p) = deny)

▪ User Deny Conjunctive Prohibition: The quaternary relation U_deny_conjunctive
from U to ARs to OAs to OACs.

 ∙ U_deny_conjunctive ⊆ U×ARs×OAs×OACs

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(p) ⋀ ∃ars∈ARs, ∃oas∈OAs,
 ∃oacs∈OACs: ((process_user(p), ars, oas, oacs)∈U_deny_conjunctive ⋀

 ar∈ars ⋀ (oa∈oas: o∈oa ⋀ oa∈oacs: o∈oa))
  reference_mediation(<op, o>p) = deny)

▪ Process Deny Disjunctive Prohibition: The quaternary relation P_deny_disjunctive
from P to ARs to OAs to OACs.

 ∙ P_deny_disjunctive⊆ P×ARs×OAs×OACs

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(p) ⋀ ∃ars∈ARs, ∃oas∈OAs,
 ∃oacs∈OACs: ((p, ars, oas, oacs)∈P_deny_disjunctive ⋀

 ar∈ars ⋀ (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa))
  reference_mediation(<op, o>p) = deny)

▪ Process Deny Conjunctive Prohibition: The quaternary relation P_deny_conjunctive
from P to ARs to OAs to OACs.

 ∙ P_deny_conjunctive ⊆ P×ARs×OAs×OACs

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(p) ⋀ ∃ars∈ARs, ∃oas∈OAs,
 ∃oacs∈OACs: ((p, ars, oas, oacs)∈P_deny_conjunctive ⋀

 ar∈ars ⋀ (oa∈oas: o∈oa ⋀ oa∈oacs: o∈oa))
  reference_mediation(<op, o>p) = deny)

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 28

▪ User Attribute Deny Disjunctive Prohibition: The quaternary relation
UA_deny_disjunctive from UA to ARs to OAs to OACs.

 ∙ UA_deny_disjunctive ⊆ UA×ARs×OAs×OACs

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(p) ⋀ ∃ua∈UA, ∃ars∈ARs, ∃oas∈OAs,

 ∃oacs∈OACs: ((ua, ars, oas, oacs)∈UA_deny_disjunctive ⋀

 process_user(p) ASSIGN+ ua ⋀ ar∈ars ⋀ (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa))

  reference_mediation(<op, o>p) = deny)

▪ User Attribute Deny Conjunctive Prohibition: The quaternary relation
UA_deny_conjunctive from UA to ARs to OAs to OACs.

 ∙ UA_deny_conjunctive ⊆ UA×ARs×OAs×OACs

 ∙ p∈P, ar∈AR, o∈O: ((ar, o) ∈ PCap(p) ⋀ ∃ua∈UA, ∃ars∈ARs, ∃oas∈OAs,
 ∃oacs∈OACs: ((ua, ars, oas, oacs)∈UA_deny_conjunctive ⋀

 process_user(p) ASSIGN+ ua ⋀ ar∈ars ⋀ (oa∈oas: o∈oa ⋀ oa∈oacs: o∈oa))

  reference_mediation(<op, o>p) = deny)

▪ Prohibition Determination: The relation NoDenys from P to AR to O; the tuple (p, ar,
o) is a member of NoDenys iff no prohibitions exist that affect the authorization.

 p∈P, ar∈AR, o∈O: ((p, ar, o) ∈ NoDenys 

 ua∈UA, ars∈ARs, oas∈OAs, oacs∈OACs: ¬(ar∈ars ⋀

 (((ua, ars, oas, oacs) ∈ UA_deny_disjunctive ⋀ process_user(p) ASSIGN+ ua ⋀
 (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa)) ⋁

 ((ua, ars, oas, oacs) ∈ UA_deny_conjunctive ⋀ process_user(p) ASSIGN+ ua ⋀

 (oa∈oas: o∈oa ⋀ oa∈oas: o∈oa)) ⋁
 ((p, ars, oas, oacs) ∈ P_deny_disjunctive ⋀

 (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa)) ⋁
 ((process_user(p), ars, oas, oacs) ∈ U_deny_disjunctive ⋀
 (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa)) ⋁
 ((p, ars, oas, oacs) ∈ P_deny_conjunctive ⋀

 (oa∈oas: o∈oa ⋀ oa∈oas: o∈oa)) ⋁
 ((process_user(p), ars, oas, oacs) ∈ U_deny_conjunctive ⋀

 (oa∈oas: o∈oa ⋀ oa∈oas: o∈oa)))))

▪ Reference Mediation (with Prohibitions): The function from domain AReq to
codomain {grant, deny}.

 p∈P, op∈Op, o∈O: (reference_mediation(<op, o>p) = grant 

 ar∈AR: ((ar, o)∈ReqCap(op, o)  ((ar, o) ∈ PCap(p) ⋀ (p, ar, o) ∈ Nodenys)))
 otherwise, reference_mediation(<op, o>p) = deny

3.5 Obligations

Automatic changes to policy based on specific conditions related to modes and patterns of access

can be accomplished through obligations. Events are the means by which obligations are

triggered. An event occurs each time a requested access <op, o>p executes successfully.

Information related to the event is called the event context and is used by the PM to process

obligations. The process identifier, identifier of the associated user, access operation, and object

identifier of the triggering event are always returned as part of the event pattern. Other

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 29

information conveyed via the event context varies based on the type of event that occurred and

may include items such as the containers containing the targeted object.

The two main components needed to define an obligation are an event pattern, ep, and a

response, resp. An obligation can be expressed in various ways; the following is used in this

report:

When ep do resp

The event pattern specifies conditions that if matched with an event context, trigger the

execution of the response. The event pattern is a logical expression that can use the information

returned via the event context, as well as the policy elements and relations in existence when the

event occurs, to specify the triggering conditions. The invocation of an administrative command

constitutes the response. Arguments passed to administrative commands include items from the

event context or derived from evaluation of the event pattern. Administrative commands are

capable of adjusting policy through changes to the prevailing policy element relationships and to

individual policy elements. Administrative commands are discussed in detail in the next chapter.

The conditions for an event pattern can be extensive. For example, an event pattern may apply

to certain operations or any operation; the processes of a specific user or group of users, or any

user; one type of object or any object; or all defined policy classes or a specific set of policy

classes. EC.name denotes the name item of an event context. EC.p, EC.u, EC.o, and EC.op

refer respectively to the identifiers of the process, user, object accessed, and access operation,

which are conveyed in the event context of every event.2

The execution of an administrative routine can potentially create one or more events for which

other obligations might apply, and whose response in turn could create events that trigger further

obligations. The chain of obligation-triggering events could continue until a point at which all

obligations are satisfied, or continue indefinitely and result in a livelock situation. Livelocks

may also induce resource starvation and potentially create a deadlock situation. Therefore,

caution is required when specifying obligations to avoid creating conditions that lead to livelock

situations.

An obligation is typically created by an administrative command. The user that issues the

command, normally an administrator, must have sufficient authorization not only to create the

obligation, but also to perform the body of the response. When the event pattern of a defined

obligation is matched, the associated response is carried out automatically under the

authorization of the user that created it, regardless how or by whom the event was triggered. An

obligation’s response can conceivably be involved in a race condition with administrative actions

being taken manually, as well as the responses of other concurrently triggered obligations that

remain outstanding.

2 It may seem redundant to include both the user and process identifiers in the event context, since the process_user function can

be used to obtain the user identifier from the process identifier. The rationale for including both is that at the time the event context

is being processed, the process that spawned the event may have already terminated, preventing derivation of the user identifier.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 30

Obligations provide a powerful means to define within a policy specification, specific

circumstances associated with an event. An occurrence of those circumstances precipitates

automatic changes to policy without intervention from an administrator. While obligations are

not represented on an authorization graph, any changes to the policy specification that occur

because of an obligation are reflected in the authorization graph, with the exception of any newly

created obligations.

The set of possible obligations within a policy specification is defined by the ternary relation

OBLIG ⊆ U × Pattern × Response. For a tuple of OBLIG, (u, pattern, response), u represents

the user responsible for establishing the obligation and under whose authorization the response is

carried out. The pattern and response elements each denote a sentence in a grammar that

respectively expresses the conditions of an event pattern and the administrative command

invocation of the response. That is, the pattern and response elements represent a sequence of

symbols whose syntax is well formed according to its respective grammar, and whose execution

occurs during the matching process, in the case of a pattern, or after a match occurs, in the case

of a response.

Notation for Obligations. The relationships among elements of the PM model involved
in obligations can be defined more formally as shown below.

▪ Event Context (EC): The event context of an event associated with a non-
administrative access request, which triggers an obligation. EC.name denotes the name
item for the event context of the spawning event.

▪ String: A finite sequence of symbols over some alphabet Σ.

▪ Pattern: A finite set of strings over the alphabet ΣC, which represents the logical
expression of an event pattern’s conditions. Pattern denotes a formal language over the
alphabet in question. The alphabet and language grammar used to specify event patterns
are an implementation choice.

▪ Response: A finite set of strings over the alphabet ΣR, which represents the invocation
of an administrative command that constitutes an event response. Response denotes a
formal language over the alphabet in question. The alphabet and language grammar
used to specify responses are an implementation choice.

▪ Obligations: The ternary relation OBLIG from U to Pattern to Response.

 OBLIG ⊆ U×Pattern×Response

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 31

4. Administrative Considerations

The PM model distinguishes between access controls on resources represented by objects (i.e.,

non-administrative access) and access controls for the creation and maintenance of policy

elements and relations (i.e., administrative access). The previous chapters focused mainly on the

modeling of policies involving non-administrative access; specifically, the definition of

associations and the rules for deriving privileges and mediating the access of resource operations

on objects. The derivation of privileges from associations involving administrative access

policies, although similar, is distinct and follows a separate set of definitions and rules.

Many access rights categorized as administrative access rights, such as creating a file and

assigning it to a folder, arguably seem non-administrative from a usage standpoint, but

nevertheless, from a policy specification standpoint (e.g., creating an object and assigning an

object to object attribute) are considered administrative. The main difference is that non-

administrative actions pertain to activities on protected resources, while administrative actions

pertain to the manipulation of a policy comprising the policy elements and relationships defined

within and maintained by the PM. This chapter explains the principles involved in specifying

administrative access rights under the PM model. It also discusses the precepts to follow when

conducting administrative activities.

4.1 Administrative Associations and Privileges

The term administrative association refers to an association that involves administrative access

rights exclusively to designate access authority. Administrative associations are distinct from

non-administrative associations, as mentioned above. While administrative associations appear

on an authorization graph, as do non-administrative associations, administrative associations can

apply to any policy element, not just object attributes. Administrative associations are defined

by the ternary relation Admin_ASSOC from UA to AARs to PE (i.e., Admin_ASSOC ⊆

UA×AARs×PE), where AARs = 2AAR – {∅}.

With administrative associations, any referenced policy element takes on special semantics. As

the third term of an association, the policy element serves as a referent or representative for the

section of the authorization graph rooted at the policy element. That is, a referent policy element

serves as a designator for not only itself, but also for policy elements and relationships contained

by the referent, which allows the elements of that subgraph to be treated as objects within the PM

framework and manipulated accordingly. The following classes of administrative access rights

apply within the PM model:

 Authority to create or delete a policy element with respect to an existing element of a

policy graph

 Authority to create or delete assignments between policy elements

 Authority to form or rescind an association, prohibition, or obligation.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 32

Figure 5 presents a simple example of an authorization graph involving both administrative and

non-administrative associations, which builds on the example presented earlier in Figure 4. The

left side of the policy graph has been expanded to accommodate a set of administrators for the

policy class, which is designated by the Administrators and OUadmin user attributes. A single

user, u4, is assigned as an administrator for the OU. Administrative associations that specify the

actions the administrator is able to carry out are illustrated in blue. Non-administrative

associations that apply to common users are illustrated in black, using a different type of

connector between the elements of these associations, than that used for the administrative

associations. This convention for depicting the two different types of associations with a

distinctive type of connector is followed throughout the remainder of this report.

Figure 5: Simple Example Involving Administrative Associations

The authorization graph in Figure 5 contains the following two administrative associations:

(OUadmin, aars1, Division) and (OUadmin, aars2, Projects), where aars1 and aars2 each represent

a set of administrative access rights (i.e., each is a member of AARs). The first association

permits the user assigned to OUadmin to create new groups of users and individual users for the

OU, to delete existing groups and users, to form new associations for existing and newly created

user groups in the OU, and to rescind existing associations involving OU policy elements. The

second association permits new groups of projects and individual objects to be created, existing

projects and objects to be deleted, new associations to be formed for existing and new projects,

and existing associations to be rescinded.

Without administrative associations, a system policy would be very limited. For instance, in this

example, only existing objects could be viewed and modified; new users could not be created or

old ones deleted and new objects could not be created without the appropriate administrative

associations.

The definition for administrative privileges derived from administrative associations is similar to

that for non-administrative privileges and associations. An administrative privilege specifies a

relationship between a user, an administrative access right, and a policy element. For a single

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 33

policy class, the triple (u, aar, pe) is an administrative privilege, iff there exists an administrative

association (ua, aars, pei), such that user u ASSIGN+ ua, aar ∈ aars, and pe ASSIGN* pei.

As mentioned above, each referent, pek, represents a policy graph containing all policy elements

from which the referent is reachable through one or more assignments, and includes all

relationships bound to those elements. Although a referent potentially represents many policy

elements and relationships, an administrative access right may apply to only a subset of the

policy elements that are represented by the referent. For example, if the referent is a container,

an access right might apply to one or more of the policy elements it contains, or the access right

might apply only to the container itself—it depends entirely on the access right. This is similar

to non-administrative associations. For example, an association involving r and w access rights

on an object attribute container apply to the contained objects and not to the container. As with

non-administrative associations, the properties of a policy element involved in an administrative

association include not only those directly held by the element, but also the properties inherited

from every element of the subgraph in which the policy element is contained.

4.2 Administrative Access Requests and Reference Mediation

The access requests and reference mediation are reflected in the PM model differently for

administrative actions than for non-administrative actions. Recall that in an access request, <op,

o>p, representing some non-administrative action, op designates a single abstract resource

operation on the object, while in a privilege, (u, ar, o), ar designates an access right that

authorizes an unlimited number of abstract resource operations on an object. The operation is

synonymous with the access right (e.g., a “read” operation corresponding to an “r” access right)

and form a one-to-one mapping. For administrative actions, however, the abstract operation in

an administrative access request is not necessarily synonymous with the access rights needed to

carry out the operation, and the two aspects require greater delineation. In addition,

administrative actions typically involve not just a single object, but multiple policy elements, sets

of policy elements, and sets of access rights, which affects the formulation of administrative

access requests.

Let AOp represent the set of possible administrative operations and Argseq the set of all finite

lists of arguments for administrative actions. An administrative access request AAreq is defined

as <aop, argseq>p, where aop∈AOp and argseq∈Argseq. The argument sequence, argseq, is a

ordered list of one or more arguments [argseq.1, argseq.2, …, argseq.k], which defines the scope

and nature of the action. Each argument can be one of the following items: a distinct policy

element, a set of policy elements, an event pattern, a response, a set of non-administrative access

rights, or a set of administrative access rights. That is, an administrative access request

comprises an administrative operation and a list of enumerated arguments that are dictated by the

type of operation being attempted.

The order of the arguments in an argument sequence for an administrative action is significant,

as is the number and type. For instance, the creation of an assignment between two object

attributes, <create-assign-OAtoOA, [oai, oaj]>p, is completely different from one where the order

is reversed, <create-assign-OAtoOA, [oaj, oai]>p. Exactly two policy elements are required for

create-assign-OAtoOA operation: the first corresponding to the tail of the assignment and the

second to the head. In contrast, an administrative action to create a read association between a

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 34

user attribute and an object attribute, <create-assoc, [uai, {r}, oaj]>p, requires exactly three

arguments: a user attribute, a set of access rights, and an object attribute.

For an administrative action to be granted, the user on whose behalf the process operates must

hold sufficient authority over the policy elements involved, in the form of at least one and

possibly more administrative privileges over each of the policy elements involved. Recall that

the authority associated with an administrative privilege of the form (u, aar, pe) may apply not

only to pe, but also, as a referent, to any policy element contained by pe.

To determine the disposition of an access request, <aop, argseq>p, reference mediation requires

a mapping from the administrative operation and enumerated arguments in question to a set of

capabilities that are required over the policy elements referenced in the arguments for the process

to carry out the request, barring any prohibitions to the contrary. The mapping Req_ACap(aop,

argseq) returns the set of administrative capabilities that are required to carry out the

administrative action with the specified arguments. The administrative reference mediation

function grants the process p the permission to execute a request <aop, argseq>p, iff process p

holds all the capabilities in Req_ACap(aop, argseq).

Notation for Administrative Associations and Privileges. The relationships among
elements of the PM model formed through administrative associations and privileges are
defined more formally below.

▪ AAR: A finite set of administrative access rights; aar or aar1, aar2, … denote a member
of AAR, unless otherwise specified.

▪ AARs: A finite set of all subsets of administrative access rights defined in AAR,
excluding the empty set; aars or aars1, aars2, … denote a member of AARs, unless
otherwise specified.

 AARs = 2AAR – {∅}

▪ Argseq: A set of all finite enumerated lists of the form [arg1, arg2,…, argn], such that n ≥

1 ⋀ for i=1 to n: (argi ∈ PE ⋁ argi ∈ 2PE ⋁ argi ∈ Pattern ⋁ argi ∈ Response ⋁ argi ∈
ARs ⋁ argi ∈ AARs); argseq denotes a member of Argseq, and argseq.1, argseq.2, …
denote the respective element in the list argseq (e.g., argseq.2 is the second element in
argseq), unless otherwise specified.

▪ Administrative Associations: The ternary relation Admin_ASSOC from UA to AARs
to PE.

 Admin_ASSOC ⊆ UA×AARs×PE

▪ Inherent Administrative Capabilities: The partial function IACap from UA to 2(AARsxPE).

 ∙ IACap ⊆ UA x 2(AARs×PE)

 ∙ ua∈UA, aars∈AARs, pe∈PE: ((aars, pe) ∈ IACap(ua) 
 (ua, aars, pe) ∈ Admin_ASSOC)

▪ Inherent Administrative Access Entries: The partial function IAAE from PE to
2(UAxAARs).

 ∙ IAAE ⊆ PE × 2(UA×AARs)

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 35

 ∙ ua∈UA, aars∈AARs, pe∈PE: ((ua, aars) ∈ IAAE(pe) 

 (ua, aars, pe) ∈ Admin_ASSOC)

▪ Administrative Privileges: The ternary relation Admin_PRIV from U to AAR to PE.

 ∙ Admin_PRIV ⊆ U×AAR×PE

 ∙ u∈U, aar∈AAR, pe∈PE: ((u, aar, pe) ∈ Admin_PRIV  ∃ua∈UA,
∃aars∈AARs,

 ∃pei∈PE: ((ua, aars, pei) ∈ Admin_ASSOC ⋀ u ASSIGN+ ua ⋀ aar ∈ aars ⋀
 pe ASSIGN* pei))

▪ Administrative Access Entries: The function AAE from PE to 2(U×AAR).

 ∙ AE ⊆ PE × 2(U×AAR)

 ∙ u∈U, aar∈AAR, pe∈PE: ((u, aar) ∈ AAE(pe)  (u, aar, pe) ∈ Admin_PRIV)

▪ Administrative Capabilities: The function ACap from U to 2(AAR×PE).

 ∙ ACap ⊆ U × 2(AAR×PE)

 ∙ u∈U, aar∈AAR, pe∈PE: ((aar, pe) ∈ ACap(u)  (u, aar, pe) ∈ Admin_PRIV)

▪ Administrative Process Capabilities: The function APCap from P to 2(AAR×PE).

 ∙ APCap ⊆ P × 2(AAR×PE)

 ∙ p∈P, aar∈AAR, pe∈PE: ((aar, pe) ∈ APCap(p) 

 (process_user(p), aar, pe) ∈ Admin_PRIV)

▪ Administrative Access Request: A finite set AAReq of possible process access
requests.

 ∙ AAReq ⊆ P × (AOp×Argseq)
 ∙ (p, (aop, argseq)) ∈ AAReq ≝ <aop, argseq>p

▪ Required Administrative Capabilities: The partial binary function ReqACap from AOp

× Argseq to 2(AAR×PE), such that aop∈AOp, argseq∈Argseq: (capset ∈ ReqACap(aop,

argseq)  aar∈AAR, pe∈PE: ((aar, pe)∈capset  (aar,pe) is a requisite access right
needed to perform the action aop on argseq)).

 ReqACap ⊆ (AOp×Argseq) × 2(AAR×PE)

▪ Reference Mediation of Administrative Actions: The function from domain AAReq to
codomain {grant, deny}.

 p∈P, aop∈AOp, argseq∈Argseq:

 (Admin_reference_mediation(<aop, argseq>p) = grant 

 ∃capset ∈ ReqACap(aop, argseq): ∀aar ∈ AAR, ∀pe ∈ PE: ((aar, pe) ∈ capset 
 (aar, pe)∈APCap(p)));

 otherwise, Admin_reference_mediation(<aop, argseq>p) = deny

4.3 Administrative Prohibitions and Obligations

Recall that prohibitions act antithetically to privileges, denoting an effective set of restrictions on

privileges for a specific user or process, regardless of whether any of the privileges designated

actually can or cannot be derived for the user or process in question. Because the set of

privileges needed for administrative access rights is distinct from the set of privileges for non-

administrative operations, administrative prohibitions (i.e., prohibitions on administrative

privileges) must be defined accordingly.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 36

Notational conventions similar to those for the object range of a policy element, pe, and the

complementary object range, pe, can be defined for administrative prohibitions to accommodate

the treatment of policy elements as referents. Let pe denote the set of all policy elements that

can reach element pe (i.e., pe = {x: x∈PE and x ASSIGN* pe}). The complement of pe with

respect to the set of all policy elements, PE, is denoted by pe (i.e., pe = PE – pe) and

represents those policy elements for which pe is not reachable. The notation pe and pe are

respectively called the element range and complementary element range of a policy element.

The quaternary relation U_Admin_deny_disjunctive ⊆ U × AARs × PEs × PECs, where PEs =
PECs = 2PE, defines the set of user deny prohibitions for a policy specification, which involve

administrative access rights. The tuple, U_Admin_deny_disjunctive(u, aars, pes, pecs) ∈, where

u ∈ U, aars ∈ AARs, pes ∈ PEs, pecs ∈ PECs, and pes ⋃ pecs ≠ ∅, denotes that any process p

executing on behalf of user u is withheld the authority in aars over any policy element that can

reach one of the elements in pes, or cannot reach one of the policy elements in pecs. Similarly,

an individual tuple (u, aars, pes, pecs) of the quaternary relation U_Admin_deny_conjunctive ⊆

U × AARs × PEs × PECs, denotes that a process p executing on behalf of user u is withheld the

authority in aars over any policy element that can reach all of the policy elements in pes and also

cannot reach any of the policy elements in pecs.

The definitions for process-based prohibitions that are needed to accommodate administrative

access rights are similar to those for user-based prohibitions. The prohibition

P_Admin_deny_disjunctive ⊆ P × AARs × PEs × PECs represents a process-based

administrative deny relation, where p ∈ P, aars ∈ AARs, pes ∈ PEs, pecs ∈ PECs, and (p, aars,

pes) ∈ P_Admin_deny_disjunctive. The meaning of P_Admin_deny_disjunctive(p, aars, pes,

pecs) is that the process p is withheld the authority in aars over any policy element that can reach

one of the policy elements in pes, or cannot reach one of the policy elements in pecs. The

complementary relation for process-based administrative prohibitions also exists. The meaning

of P_Admin_deny_conjunctive(p, aars, pes, pecs) is that the process p is withheld the authority

in aars over any policy element that can reach all of the policy elements in pes and also cannot

reach any of the policy elements in pecs.

User attribute-based prohibitions also apply to administrative access rights. The quaternary

relation UA_Admin_deny_disjunctive ⊆ UA × AARs × PEs × PECs, defines the set of user deny

prohibitions. The tuple UA_Admin_deny_disjunctive(ua, aars, pes, pecs) denotes that any

process p, executing on behalf of some user u that is contained by ua, is withheld the authority in

aars over any policy element that can reach one of the elements in pes, or cannot reach one of the

policy elements in pecs. Similarly, an individual tuple (ua, aars, pes, pecs) of the quaternary

relation UA_Admin_deny_conjunctive ⊆ UA × AARs × PEs × PECs, denotes that a process p,

executing on behalf of some user u that is contained by ua, is withheld the authority in aars over

any policy element that can reach all of the policy elements in pes and also cannot reach any of

the policy elements in pecs.

Administrative prohibitions take precedence over any existing administrative associations and

the privileges derived from those associations. An access request to a subgraph of an

authorization graph is granted a user or process acting on behalf of the user, iff the appropriate

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 37

administrative associations are defined that allow such access, and there is not an administrative

prohibition for a user attribute containing that user, or for that user or process, on the requested

entity, which countermands the administrative access operation in question. If such a prohibition

does exist, access is denied. That is, when administrative prohibitions apply, reference

mediation grants the process p permission to execute an access request <aop, argseq>p, iff for u =

process_user(p), the following conditions hold:

 The administrative privilege (u, aar, pe) exists, for all capabilities (aar, pe) in at least one

capset ∈ Req_ACap(aop, argseq);

 There do not exist administrative prohibitions (p, aars, pes, pecs) ∈

P_Admin_deny_disjunctive or (u, aars, pes, pecs) ∈ U_Admin_deny_disjunctive, such

that aar ∈ aars, and for some member x of pes, pe ∈ x, or for some member x of pecs, pe

∈ x;

 There do not exist administrative prohibitions (p, aars, pes, pecs) ∈

P_Admin_deny_conjunctive or (u, aars, pes, pecs) ∈ U_Admin_deny_conjunctive, such

that aar ∈ aars, and for all members x of pes, pe ∈ x, and for all members x of pecs, pe ∈

x.

 There do not exist administrative prohibitions (ua, aars, pes, pecs) ∈

UA_Admin_deny_disjunctive, such that aar ∈ aars, u ASSIGN+ ua, and for some

member x of pes, pe ∈ x, or for some member x of pecs, pe ∈ x;

 There do not exist administrative prohibitions (ua, aars, pes, pecs) ∈

UA_Admin_deny_conjunctive, such that aar ∈ aars, u ASSIGN+ ua, and for all members

x of pes, pe ∈ x, and for all members x of pecs, pe ∈ x.

Obligations for administrative access requests are distinct from, but similar to those for non-

administrative access requests. Like a non-administrative obligation, an administrative

obligation consists of an event pattern and a response, and the response is triggered by events

that match the event pattern. The invocation of an administrative command also constitutes the

response for an administrative obligation. However, administrative obligations are triggered

only by administrative events, which occur each time an administrative access request <aop,

argseq>p executes successfully.

The event context for administrative events, therefore, is distinct from that for non-administrative

events and accordingly must convey different items, namely AEC.p, AEC.u, AEC.aop, and

AEC.argseq, where AEC represents the administrative event context, and the suffixes p, u, aop,

and argseq represent respectively the process, user, administrative action, and argument sequence

elements of the event context. An event pattern and response elements of an administrative

obligation use items of the administrative event context to specify the conditions that trigger the

execution of the response and to serve as arguments for the response.

The set of possible administrative obligations within a policy specification is defined by the

ternary relation Admin_OBLIG ⊆ U × Pattern × Response. The tuple (u, pattern, response) ∈

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 38

Admin_OBLIG denotes that the user u is responsible for establishing the obligation consisting of

the event pattern and event response elements, pattern and response. It is under the authorization

of u that the response is carried out, when the pattern matches an event. The same grammars

used to express non-administrative obligations are also presumed to be used to express

administrative obligations.

Notation for Administrative Prohibitions and Obligations. The relationships among
elements of the PM model affected by administrative prohibitions are defined more
formally below.

▪ PEs: A finite set of all subsets of policy elements defined in PE; pes or pes1, pes2, …
denote a member of PEs, unless otherwise specified.

 PEs = 2PE

▪ PECs: A finite set of all subsets of policy elements defined in PE; pecs or pecs1, pecs2,
… denote a member of PECs, unless otherwise specified.

 PECs = 2PE

▪ Element Range of a Policy Element: The set of policy elements that can reach a
given policy element through 0 or more assignments.

 pe∈PE: pe ≝ {x: x∈PE ⋀ x ASSIGN* pe}.

▪ Complementary Element Range of a Policy Element: The set of policy elements that
cannot reach a given policy element.

 pe∈PE: pe ≝ PE–pe.

▪ User Administrative Deny Disjunctive Prohibition: The quaternary relation
U_Admin_deny_disjunctive from U to AARs to PEs to PECs.

 ∙ U_Admin_deny_disjunctive ⊆ U×AARs×PEs×PECs

 ∙ p∈P, aop∈AOp, argseq∈Argseq:

 (capset ∈ ReqACap(aop, argseq): ∃aar∈AAR, ∃pe∈PE: ((aar, pe) ∈ capset ⋀
 ∃aars∈AARs, ∃pes∈PEs, ∃pecs∈PECs:

 ((process_user(p), aars, pes, pecs)∈U_Admin_deny_disjunctive ⋀
 aar∈aars ⋀ (∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y)) 
 Admin_reference_mediation(<aop, argseq>p) = deny))

▪ User Administrative Deny Conjunctive Prohibition: The quaternary relation
U_Admin_deny_conjunctive from U to AARs to PEs to PECs.

 ∙ U_Admin_deny_conjunctive ⊆ U×AARs×PEs×PECs

 ∙ p∈P, aop∈AOp, argseq∈Argseq:

 (capset ∈ ReqACap(aop, argseq): ∃aar∈AAR, ∃pe∈PE: ((aar, pe)∈capset ⋀

 ∃aars∈AARs, ∃pes∈PEs, ∃pecs∈PECs:
 ((process_user(p), aars, pes, pecs)∈U_Admin_deny_conjunctive ⋀

 aar∈aars ⋀ (x∈pes: pe∈x ⋀ y∈pecs: pe∈y))) 
 Admin_reference_mediation(<aop, argseq>p) = deny)

▪ User Attribute Administrative Deny Disjunctive Prohibition: The quaternary relation
UA_Admin_deny_disjunctive from UA to AARs to PEs to PECs.
 ∙ UA_Admin_deny_disjunctive ⊆ UA×AARs×PEs×PECs

 ∙ p∈P, aop∈AOp, argseq∈Argseq:

 (capset ∈ ReqACap(aop, argseq): ∃aar∈AAR, ∃pe∈PE: ((aar, pe)∈capset ⋀

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 39

 ∃ua∈UA, ∃aars∈AARs, ∃pes∈PEs, ∃pecs∈PECs:

 ((ua, aars, pes, pecs)∈UA_Admin_deny_disjunctive ⋀

 process_user(p) ASSIGN+ ua ⋀

 aar∈aars ⋀ (∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y))) 
 Admin_reference_mediation(<aop, argseq>p) = deny)

▪ User Attribute Administrative Deny Conjunctive Prohibition: The quaternary
relation UA_Admin_deny_conjunctive from UA to AARs to PEs to PECs.

 ∙ UA_Admin_deny_conjunctive ⊆ UA×AARs×PEs×PECs

 ∙ p∈P, aop∈AOp, argseq∈Argseq:

 (capset ∈ ReqACap(aop, argseq): ∃aar∈AAR, ∃pe∈PE: ((aar, pe)∈capset ⋀
 ∃ua∈UA, ∃aars∈AARs, ∃pes∈PEs, ∃pecs∈PECs:

 ((ua, aars, pes, pecs)∈UA_Admin_deny_conjunctive ⋀

 process_user(p) ASSIGN+ ua ⋀

 aar∈aars ⋀ (x∈pes: pe∈x ⋀ y∈pecs: pe∈y))) 
 Admin_reference_mediation(<aop, argseq>p) = deny)

▪ Process Administrative Deny Disjunctive Prohibition: The quaternary relation
P_Admin_deny_disjunctive from P to AARs to PEs to PECs.

 ∙ P_Admin_deny_disjunctive ⊆ P×AARs×PEs×PECs

 ∙ p∈P, aop∈AOp, argseq∈Argseq:

 (capset ∈ ReqACap(aop, argseq): ∃aar∈AAR, ∃pe∈PE: ((aar, pe)∈capset ⋀

 ∃aars∈AARs, ∃pes∈PEs, ∃pecs∈PECs:
 ((p, aars, pes, pecs)∈P_Admin_deny_disjunctive ⋀ aar∈aars ⋀
 (∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y))) 
 Admin_reference_mediation(<aop, argseq>p) = deny)

▪ Process Administrative Deny Conjunctive Prohibition: The quaternary relation
P_Admin_deny_conjunctive from P to AARs to PEs to PECs.
 ∙ P_Admin_deny_conjunctive ⊆ P×AARs×PEs×PECs

 ∙ p∈P, aop∈AOp, argseq∈Argseq:

 (capset ∈ ReqACap(aop, argseq): ∃aar∈AAR, ∃pe∈PE: ((aar, pe)∈capset ⋀

 ∃aars∈AARs, ∃pes∈PEs, ∃pecs∈PECs:
 ((p, aars, pes, pecs)∈P_Admin_deny_conjunctive ⋀ aar∈aars ⋀
 (x∈pes: pe∈x ⋀ y∈pecs: pe∈y))) 
 Admin_reference_mediation(<aop, argseq>p) = deny)

▪ Administrative Prohibition Determination: The relation NoDeny from P to AAR to
PE. The triple (p, aar, pe) is a member of NoDeny, iff no prohibitions exist that affect the
authorization aar on the policy element pe for the process p.

 p∈P, aar∈AAR, pe∈PE: ((p, aar, pe)∈NoDeny 

 ua∈UA, aars∈AARs, pes∈PEs, pecs∈PECs: ¬(aar∈aars ⋀
 (((ua, aars, pes, pecs) ∈ UA_Admin_deny_disjunctive ⋀

 process_user(p) ASSIGN+ ua ⋀ (∃x∈pes: pe∈ x ⋁ ∃y∈pecs: pe∈y)) ⋁
 ((ua, aars, pes, pecs) ∈ UA_Admin_deny_conjunctive ⋀

 process_user(p) ASSIGN+ ua ⋀ (x∈pes: pe∈x ⋀ y∈pecs: pe∈y)) ⋁

 ((p, aars, pes, pecs) ∈ P_Admin_deny_disjunctive ⋀

 (∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y)) ⋁
 ((process_user(p), aars, pes, pecs) ∈ U_Admin_deny_disjunctive ⋀

 (∃x∈pes: pe∈ x ⋁ ∃y∈pecs: pe∈y)) ⋁
 ((p, aars, pes, pecs) ∈ P_Admin_deny_conjunctive ⋀

 (x∈pes: pe∈x ⋀ y∈pecs: pe∈y)) ⋁

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 40

 ((process_user(p), aars, pes, pecs) ∈ U_Admin_deny_conjunctive ⋀

 (x∈pes: pe∈x ⋀ y∈pecs: pe∈y)))))

▪ Reference Mediation of Administrative Actions (with Prohibitions): The function
from domain AAReq to codomain {grant, deny}.

 p∈P, aop∈AOp, argseq∈Argseq:

 (Admin_reference_mediation(<aop, argseq>p) = grant 

 ∃capset ∈ ReqACap(aop, argseq): aar∈AAR, pe∈PE: ((aar, pe)∈capset 

 ((aar, pe)∈APCap(p) ⋀ (p, aar, pe)∈NoDeny)));
 otherwise, Admin_reference_mediation(<aop, argseq>p) = deny

▪ Administrative Event Context (AEC): The event context for an event associated with
an administrative access request, which triggers an obligation. AEC.name denotes the
name item for the event context of the spawning administrative event.

▪ Administrative Obligations: The ternary relation Admin_OBLIG from U to Pattern to
Response.

 Admin_OBLIG ⊆ U×Pattern×Response

4.4 Administrative Commands and Routines

Administrative commands and routines are the means by which policy specifications are formed.

Their structure and use are discussed in detail below. The core administrative commands and

routines for the PM, along with a description of their semantics, are presented in Appendix C.

4.4.1 Administrative Routines

Administrative routines describe rudimentary operations that can occur on the policy elements

and relationships of the PM model. An administrative routine is represented as a parameterized

procedure, whose body describes state changes to policy that occur when the routine is executed

(e.g., a policy element or relation Y changes state to Y′ when some function f is applied).

Administrative routines are specified using the following format:

Rtnname (x1, x2, …, xk)

 … preconditions …

{

Y′= f (Y, x1, x2, …, xk)

}

The name of the administrative routine, Rtnname, precedes its formal parameters, x1, x2, …, xk

(k ≥ 0). Comments may appear anywhere in a routine. Single line comments begin with double,

forward slashes (i.e., // comment); multiple line comments begin with a forward slash and

asterisk and end with an asterisk and forward slash (i.e., /* comment */). A set of preconditions

preface the body of the routine, which is delineated by left and right braces (i.e., { body }).

Preconditions are logical expressions that must be satisfied for the routine to be invoked.

Complete predicate expressions that appear on consecutive lines are conjoined together by

default (i.e., ⋀ implied between them). No state changes described in the body can occur unless

the preconditions are satisfied. Preconditions for administrative routines are used to ensure that

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 41

the arguments supplied to the routine are valid and that policy elements and relationships are

maintained consistently with the properties of the model.

Consider, as an example, the administrative routine CreateAssoc shown below, which specifies

the creation of an association. The preconditions here stipulate membership of the x, y, and z

parameters respectively to the user attribute, access right set, and object attribute elements of the

model. The body describes the addition of the tuple (x, y, z) to the ASSOC relation, which

changes the state of the relation to ASSOC′. If tuple (x, y, z) was a member of ASSOC to begin

with, the relation is unchanged (i.e., ASSOC′ = ASSOC).

CreateAssoc (x, y, z)

 x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ OA

{

ASSOC′ = ASSOC ⋃ {(x, y, z)}

 }

Compared to administrative commands, which are discussed in the next section, administrative

routines are more primitive. That is, each administrative routine entails a modification to the

policy configuration that typically involves either the creation or deletion of a policy element, the

creation or deletion of an assignment between policy elements, or the creation or deletion of an

association, prohibition, or obligation. Administrative routines provide the foundation for the

PM framework and must perform their intended function correctly and without unwanted side

effects. Access to these security-critical routines must be restricted.

4.4.2 Administrative Commands

An administrative command consists mainly of a parameterized interface and a sequence of

administrative routine invocations. Administrative commands build upon administrative routines

to define the protection capabilities of the PM model. The body of an administrative command

is executed as an atomic transaction—an error or lack of capabilities that causes any of the

constituent routines to fail execution causes the entire command to fail, producing the same

effect as though none of the routines were ever executed. Administrative commands are

specified using the following format:

Cmdname (x1, x2, …, xk)

 … preconditions …

{

rtn1

rtn2

. . .

rtnn

 }

The name of the administrative command, Cmdname, precedes the command’s formal

parameters, x1, x2, …, xk (k ≥ 0). Each formal parameter of an administrative command can

serve as an argument in any of the administrative routine invocations, rtn1, rtn2, …, rtnn (n ≥ 0),

which make up the body of the command. As with administrative routines, the body of a

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 42

command is prefixed by preconditions. The preconditions ensure, in general, that the arguments

supplied to the command are valid, that the process requesting the execution of the command has

sufficient authorization to execute all constituent administrative routines, and that certain

properties of the model upon which the command relies prevail.

Administrative commands are used in a variety of ways. Figure 6 gives an overview of the types

of usage possible.

Figure 6: Administrative Commands and Routines

First and foremost, administrative commands are used to define the protection features and

services of the PM model. The semantic description of those commands is given in Appendix C.

Every administrative access request corresponds to an administrative command of the PM model

on a one-to-one basis.

Another common use of administrative commands is in the definition of obligations, as the

response to be taken whenever the corresponding event pattern is matched. It is important to

note that administrative commands used to define system policy through an obligation response

are distinct from those that define the protection features and services of the PM model and are

used to fulfill administrative access requests. Although commands defined for use in obligations

may carry out the same or similar functions to those of the PM model, they are invoked

differently and the authorization requirements for each are also different.3 Another way of

looking at the situation is that PM model commands are incompatible and not usable with

obligations. The most common types of administrative commands defined for use in setting

policy via obligations involve the creation of assignments or prohibitions. Examples of them are

given later in the report.

3 The preconditions of administrative commands defined for use in obligations require that the user who defined the obligation holds

sufficient authorization to execute all constituent administrative routines of the body, while the preconditions of administrative

commands for the PM model require that the process attempting the access holds sufficient authorization to execute all constituent

administrative routines of the body.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 43

Administrative commands can also be used to facilitate the administration of system policies.

For example, when a new user is created, an administrator typically creates a number of

containers, links them together, and grants the authority for the user to access them as its work

space. Rather than manually performing each step of this sequence of administrative actions for

each new user, the entire sequence of repeated actions can be defined as a single administrative

command and executed in its entirety as an atomic action.

Taking this idea of bundling a step further, it is possible to combine a lengthy extended sequence

of administrative actions together into a single administrative command that is capable of

building an entire system policy. This type of bundling would allow an established policy to be

instantiated quickly elsewhere, and also allow command libraries containing various kinds of

vetted policies or policy enhancements to be assembled and shared on a broad scale.

4.4.3 Administrative Actions

Within the PM framework, several basic precepts govern the actions that a user with

administrative authority can take when using administrative commands and routines to specify

policy. They are as follows:

 Initial Conditions. In the initial state of the PM framework, certain users, designated as

administrators, may already hold authority over policy elements pre-established by the

framework, via one or more associations. Policy classes serve as the foundation of

subsequent policy specification activities.

 Element Additions. At the moment when a user A creates a policy element B, it obtains a

reference to the newly created B, which it can use in conjunction with other existing

policy elements to build up a specification. The ability to create certain policy elements

may be reserved exclusively for particular users or administrators.

 Relationship Changes. When user A successfully creates a policy element B, it may then

assign B to an existing compatible policy element for which it holds authority and

thereby gain additional authority over B through the inheritance of properties. The

authority that A holds over B and other policy elements may in turn allow A to define

additional relationships among them or to delete exist relationships.

 Element Deletions. Any user A that holds sufficient administrative authority over a

policy element B can delete the policy element. However, existing relationships

involving B must be taken into account and addressed before deleting B.

 Automation. A user with sufficient administrative authority may define obligations that

are used carry out a set of predefined activities on behalf of the user, based on the

occurrence of specific types of events.

As discussed in later chapters, administrative actions are usually conducted through a graphical

user interface that renders the authorization graph of a policy for an administrator to facilitate

modifications.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 44

5. Policy Specification

This chapter provides comprehensive details about formulating policy specifications, including

levels of administrative authorities and policy, considerations for specifications involving

multiple policy classes, and the use of primitive and consolidated operations. Examples are

given to illustrate the key concepts outlined in the discussion.

5.1 Model Aspects and Use

From the material in previous chapters, it is evident that there are many facets to the PM model.

They include the policy elements and assignments that make up a policy element diagram, the

associations and prohibitions that apply to the policy element diagram to form the authorization

graph, and obligations that are carried out when access-related events occur. Note that to

compose a specific policy for the PM, each and every one of these items may not be required.

For example, a policy may involve at a minimum only a simple policy element diagram with

several associations. On the other hand, capturing a specific policy may require the use of all

facets of the PM model.

A couple of more detailed examples are provided below to illustrate how aspects of the model

can be brought together to define a specific access control policy. They involve a data service

for electronic mail and an operating system. The examples are purposely limited in the range of

functions provided to avoid extensive policy definitions. Nevertheless, the examples should

provide a good foundation for the material in the remainder of this report.

A specific policy can be correctly expressed in numerous ways, depending on the preferences of

the administrator specifying the policy and the conventions followed. The examples in this

section should be interpreted as a general guideline to follow when developing policy

specifications, and not as a mandatory approach to follow.

5.1.1 Electronic Mail

Electronic mail is a commonly used data service that needs little introduction. For the simple

electronic mail system in question, the objects involved are messages, and the object attributes

include an inbox, outbox, draft folder, and trash folder for each user. Each user of the system is

able to read and delete messages in its inbox and to create, read, write, and delete messages in its

outbox, draft folder, and trash folder. Each user can also write a copy of a message in its outbox

to the inbox of any other user.

The policy administrator first must create a policy class for the mail system. It then can create

the necessary containers and settings to organize the mail system and to manage users and

establish their containers for messages. As an organizing step, the policy administrator creates

the user attribute, Users, and the object attribute, Objects, and assigns them to the Mail System

policy class. It also creates the object attributes Inboxes and Outboxes as system-wide

containers to retain each user’s inbox and outbox respectively, and assigns both Inboxes and

Outboxes to Objects. Figure 7 illustrates the policy element diagram constructed so far.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 45

Figure 7: Partial Policy Element Diagram for the Mail System

For each new user, ui, the administrator creates an associated user attribute, ID ui, which is

needed in forming associations that involve the user, and assigns it to Users. The following

object attributes are also created for each new user: In ui, Other ui, Out ui, Draft ui, and Trash ui.

ID ui is assigned to the Users container, In ui, is assigned to the Inboxes container, Out ui is

assigned to the Outboxes container, and Other ui are assigned to the Objects container. The

remaining containers, Draft ui and Trash ui, are assigned to Other ui.

Figure 8 below illustrates the policy element diagram constructed, along with the needed

associations and prohibitions (i.e., the authorization graph) for a typical user, u2, to conduct

generic resource operations on mail objects (i.e., messages) in its containers. No mail objects are

shown in the figure. The user u2 can read objects in its inbox, In u2, and can read and write

objects within its outbox, Out ui, because of the associations between ID u2 and those containers.

The user can read and write objects within its own draft and trash folders (i.e., the Draft ui and

Trash ui containers), which are contained by Other u2, via the association between ID u2 and

Other u2. The user can also write to the objects in the inbox of any user, which are by design

assigned to Inboxes, but not to its own inbox, due to the write prohibition illustrated with a

different style and orientation of connector (i.e., the dotted, upward-arcing connector). No mail

objects can be created, however, without further authorizations, nor can any mail objects, if they

existed, be deleted.

Figure 8: Authorization Graph for the Mail System

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 46

The administrative associations and prohibitions specified for the user complement those shown

above and define the remaining actions for the user. The rationale behind the associations and

prohibitions that are illustrated in the authorization graph in Figure 9 is as follows:

 The association between ID u2 and Inboxes allows user u2 to create messages in any

user’s inbox, including its own. Since the inbox of every mail system user gets assigned

to Inboxes when the user is established, and the properties over Inboxes are inherited, the

association essentially grants a system-wide authority.

 The prohibition between u2 and In u2 serves as a counter to the system-wide authority

granted to every user through the previous association. Prohibitions are illustrated

similarly to associations, but with a different style and orientation of connector. This

prohibition denies the user from creating messages within its own inbox, slightly

overriding the system-wide authority to create messages in any inbox.

 The association between ID u2 and In u2 allows the user to delete messages from its own

inbox.

 To create and delete messages within the containers Out ui, Draft ui, and Trash ui, an

association granting such authorization is needed between ID u2 and each of those

containers.

Figure 9: Authorization Graph with Administrative Associations and Prohibitions

A few improvements can be made to the current policy specification. For example, a user can

update a copy of a sent message residing in its outbox, which can bring about an unwanted

inconsistency from what was actually sent. To avoid this situation, the policy can be revised via

an obligation that prevents alterations to messages in the outbox, once they are written to it. The

obligation presumes that draft messages are composed in the sender’s drafts folder, and then,

when ready to be sent, copied over in their entirety to newly created message objects in the

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 47

sender’s outbox, before being deleted. The following obligation accomplishes the write-once

restriction through the creation of a user prohibition:

When EC.op = write ⋀ EC.o ASSIGN+ Outboxes do

CreateDisjunctiveU-Prohibition (EC.u, {w}, {EC.o}, ∅)4,5

Similarly, the current policy allows a user to update messages that it has posted to another user’s

inbox or messages that other users have posted there. The policy can be extended slightly with

an obligation to prevent any alterations to a message after it is initially written to an inbox. The

obligation presumes that when a message composed in the drafts folder is sent, a new message is

created in the receiver’s inbox and the contents of the draft message copied over in its entirety to

the new message. The following obligation created for each user u accomplishes the write-once

restriction through the creation of a user attribute prohibition:

When EC.op = write ⋀ EC.o ASSIGN+ Inboxes do

CreateDisjunctiveUA-Prohibition (Users, {w}, {EC.o}, ∅)6

The policy defined for the users of the mail system is discretionary. While the policy grants no

authority for a user to create administrative associations for other users to access objects under

its control, it grants a user authority to perform certain mail system activities that allow that

information to be shared. For example, one user cannot allow another user to read messages

residing in its inbox, but it can create a copy of the message and send it to another user.

5.1.2 Operating System

As mentioned previously, most present-day operating systems use DAC as their primary access

control mechanism. For the simple DAC operating system in question, the objects involved are

files and folders. The latter also serves as an object attribute or container for files and other

folders. Each user of the system has a home container and is able to read, write, create, and

delete folders and files contained within its home container. Each user can also grant other users

the privileges to read and write any file contained within its home container.

The policy administrator first creates a policy class, DAC, for the DAC operating system. It then

creates the user attribute, Users, and the object attribute, Objects, and assigns them to the DAC

policy class. For each new user, ui, the administrator creates an associated user attribute, ID ui,

and assigns it to Users. The user’s home container, Home ui, is also created and assigned to the

4 Because the sets involved in the prohibition are a singleton and an empty set, a conjunctive deny involving these same sets would

have same effect as the disjunctive deny used.

5 The semantics of the administrative command used in this obligation is essentially the same as that for the command

CreateDisjunctiveUserProhibition given in Appendix C, with one exception—the preconditions for this command asserts that the

user who defined the obligation must hold sufficient authorization to execute the body of the command.

6 As with the administrative command in the previous obligation, the CreateDisjunctiveUserAttributeProhibition command given in

Appendix C has essentially the same semantics, with the caveat of differences in preconditions.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 48

Objects container. Figure 10 illustrates the policy element diagram constructed, along with the

appropriate associations, for two typical users, u2 and u3.

Figure 10: Authorization Graph for the DAC Operating System

No prohibitions are needed in this example. Two associations are needed for each user and are

summarized in terms of u1, as follows:

 The association between ID u1 and Home u1 allows the user to read, write, and execute

files that are contained within its home container. The administrative association

between those same attributes allows the user, u1, to create, and delete files and other

containers (i.e., folders) within its home container. It also allows the user to form or

rescind an association with other user policy elements, involving the read, write, create,

and delete privileges it holds over its home container, Home u1, and through inheritance,

to any objects that are contained by the home container.

 The administrative association between ID u1 and Users allows the user to involve any

user contained by Users (i.e., all users) in the formation of a new association. This

privilege combined with the previous administrative association mentioned enables a user

to grant the privileges it holds over objects in its home container selectively to any other

user, or to rescind them. That is, u1 has the discretion to grant the authority to read, write,

execute, create, and delete files and folders within its home container to other users and

subsequently, to take back that authority.

A slight expansion of this example can better illustrate the properties of the authorization graph

that allows users to form new associations that affect the contents of their home container. User

u1 has created two files, o11 and o12, in its home container, and would like u2 to be able to read

and update o11. Using its discretionary authority, u1 forms a new association between ID u2 and

o11, illustrated in Figure 11, which allows u2 the ability to read and write the contents of o11.

Although u2 gains the ability to read and write o11, it cannot pass that ability on to other users,

since u1 did not grant u2 the ability to form or rescind an association with o11.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 49

Figure 11: DAC Authorization Graph with Objects

As plainly evident, the policy defined for the users of the operating system is discretionary. The

policy grants a user not only the authority to perform common operating system activities, such

as creating or deleting files and folders, but also authority for a user to form and rescind

associations that allow other users access to files and folders under its home container.

5.2 Levels of Policy and Administration

The PM model supports the definition of a single level or multiple levels of administrative

authority. Three main types of authorities exist. They are as follows:

 The Principal Authority (PA), also known as the super user, is a compulsory, predefined

entity of the PM. The PA is responsible for creating and controlling the policies of the

PM in their entirety and inherently holds full access privileges to carry out those

activities. The PA generally creates policy classes and first-level attributes that define an

authorization administrator and a domain for the authorization administrator to manage,

then allocates sufficient privileges to the authorization administrator to perform those

duties. Multiple domains and administrators can be created by the PM, at its discretion.

The PA can also forego the use of an authorization administrator and manage a domain

itself.

 The Domain Administrator (DA) can create users, objects, and attributes within its

domain and manage the entire domain itself. A DA can also define a sub-domain of its

domain and allocate sufficient privileges for a subdomain administrator to manage it.

The domain administered by a DA may be divided into more than one subdomain.

However, the DA must possess sufficient privileges allocated by the PA to be able to

define a subdomain and allocate the needed privileges to a subdomain administrator.

 The Subdomain Administrator (SA) can perform the activities of a domain administrator

within the sub-domain under its control. The pattern of subdividing the sub-domain for

Sub-SAs (S2A), Sub-S2As (S3A), and so forth to manage can continue as needed.

Various usage patterns of authority levels can be used when specifying policy. The two main

types of patterns discussed here are intra-policy class and inter-policy class patterns. It is

important when specifying policy to keep in mind the underlying principle that once the PA

creates the requisite domains and domain administrators and establishes the policy for a system,

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 50

the system should move safely from state to state in accordance with that policy. That is, for

given policy configuration and an initial starting state, it should not be possible to reach a state in

which a particular access authorization is acquired by policy entity for which it is not intended.

5.2.1 Intra-Policy Class Patterns

An intra-policy class pattern denotes an arrangement of authority levels in which each authority

and its according domain of control is contained within a single policy class. Figure 12 below

illustrates one such pattern. Consistent with existing conventions, the solid-line arrows represent

assignments between policy elements. The dotted-line connectors indicate administrative

associations that allow an authorization administrator, represented by a user attribute, to preside

over a domain, represented by user and object attributes.

Figure 12: Pattern of Authority Levels

The assignment and association connectors are colored to convey which authority established the

policy. PA’s control over the PM root is depicted in black and conveys its de facto authority

over all aspects of policy. The PA establishes a policy class for System X (SX), creates the user

attribute for the DA (DA SX), and the Users and Objects attributes of SX, and assigns them to

the policy class. The PA then creates the associations needed by a DA (i.e., a user assigned to

DA), such that a DA has sufficient privileges to administer the users and objects of that domain.

Finally, the PA creates a user, u1001, and assigns it to DA to preside over that domain. The

assignments and associations carried out by the PA are colored blue.

User u1001, in its capacity as a DA, can create subsets of its domain for SAs to manage. Figure

12 illustrates the user attribute for the first SA (SA1) of SX, and the user and object attributes

that comprise the subdomain, SA1 Users and SA1 Objects, along with the requisite assignments

and associations made by the DA. The DA’s assignments and association are colored green.

The assigned SA, u101, can then carry onward from this point populating the subdomain with any

users, objects, and attributes that apply.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 51

5.2.2 Inter-Policy Class Patterns

An intra-policy class pattern denotes an arrangement of authority levels in which each authority

is contained within a policy class that is distinct from the policy class for its domain of control.

An example inter-policy class pattern of authority levels is shown in Figure 13 below. Instead of

maintaining DAs and SAs within the same policy class as the users and objects of their domain, a

distinct Admin policy class is established by the PA for those authorities and is assigned to the

PM root. This pattern requires the PA to create the user attribute, SX Admin, as a placeholder

for the SX authorities and assign the attribute to Admin. A benefit of this pattern is that it allows

the PA to create and manage authorities for other systems under the Admin policy class (e.g., by

adding the SY Admin attribute for System Y) and to establish their domain of control over the

applicable policy classes that represent those systems.

From this point the actions are similar to the previous pattern. The PA creates the user attribute

for the DA, DA SX, and assigns it to SX Admin. It also establishes a policy class for System X

(SX) and the users and objects attributes of SX (i.e., Users SX and Objects SX), and assigns

them to the SX policy class. The PA then creates the associations needed by a DA, such that the

DA has sufficient privileges to administer the users and objects of that domain, which entails

privileges that span the two policy classes (i.e., Admin and System X PC), as well as privileges

to manage itself via SX Admin. Finally, the PA creates a user, u1001, and assigns it to DA SX to

preside over that domain. As before, the assignments and associations carried out by the PA are

colored blue, while those of the DA are colored green.

Figure 13: An Alternative Pattern of Authority Levels

User u1001, in its capacity as a DA, can create subsets of its domain for SAs to manage. The main

difference from the previous pattern is that the user attribute for the first SA (SA1) of SX is

assigned to SX Admin. The DA creates the attributes for the users and objects that comprise the

subdomain, SA1 Users and SA1 Objects, and makes the requisite assignments and associations

for the SA1 administrator u101 to govern the subdomain. Note that if the DA wanted to grant

SA1 the authority to create administrative subdomains of SA1 following this pattern, it would

need to do the following: create an additional attribute (e.g., SA1 Admin), assign SA1 Admin to

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 52

SX Admin, assign SA1 SX to SA1 Admin instead of SX Admin, and allocate sufficient privilege

for SA1 SX to govern SA1 Admin and to create administrative attributes for the next level of

SAs.

One distinction between this pattern and the previous one is that as a side effect of this pattern,

the DA has the authority to assign other users as DAs. This specific authority could be removed

via a prohibition, if strict compliance with the policy of the previous pattern is needed. The

opposite is also possible. While the previous pattern prescribes that the PA makes all DA user

assignments, an association from DA SX to DA SX could be added to that specification to grant

the DA this authority, if such a capability is needed.

A simple change to the above inter-policy class pattern can make it into an intra-policy class

pattern. All that it takes is deleting the Admin policy class and assigning SX Admin directly to

System X PC. Note too that it is possible to mix intra and inter-policy class patterns. That is,

some authorities can be maintained in a distinct policy class external to the one being

administered, while other authorities are maintained within the policy class being administered.

5.2.3 Personas and Patterns

In many situations, an administrator of a system is also potentially a user of that same system.

Under the PM model, disregarding the principle of least privilege and assigning an individual the

capabilities of both a system user and a system administrator through the same policy element

can lead to security issues. One solution is to allow the individual to login under either of two

distinct user policy elements (e.g., ui and uj), each representing a different persona. Having

different personas to carry out different activities is a long-standing practice for attaining least

privilege (e.g., [Sal75]). However, the fact that one individual can operate as two different users

is retained outside of the policy specification and, because it is not expressed explicitly therein,

easy to overlook or ignore, leading to problems. For example, when such an individual leaves

the organization, only one of the two user elements may be deleted, allowing the individual

continued system access through the remaining user element.

It is possible to express explicitly within the PM model an individual’s ability to act in different

capacities selectively at different times. Accommodating personas within the model is an

advanced topic that builds upon the material covered in this chaper and Appendix C. Appendix

D provides a detailed discussion of three alternative approaches. For simplicity, the examples

and discussion in the main body of the report presume that individuals assigned as system

administrators are not also assigned as users of the system.

5.3 Authority Level Examples

To illustrate authority levels and policy better, the examples of Section 5.1 are reexamined in

light of the above discussion.

5.3.1 Electronic Mail

To set up the initial authorization policy for a DA to administer the mail system described

earlier, the PA creates a framework using the intra-policy class pattern of Figure 12. Figure 14

below illustrates the policy element diagram and associations the PA establishes for the DA. The

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 53

DA, Users, and Objects attributes shown constitute the key attributes of the Mail System policy

class. The user, u1001, is assigned as the DA. In this example, no SA is required. Instead, the

DA is expected to manage the entire mail system. More than one user can be assigned as a DA,

and a DA has sufficient authority to carve out subdomains, if eventually needed.

Figure 14: Policy Assignments and Associations for the Mail System DA

The DA serves as the policy authority responsible for creating the necessary containers to

organize the mail system and for managing other users and establishing their containers for

messages. Figure 15 illustrates the authorization graph for the mail system, highlighting a

typical user, u2. The administrative assignments, associations and prohibitions made by the DA

are in blue to distinguish them from those made by the PA, which are in green.

Figure 15: Authorization Graph for the Mail System

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 54

The PA has full discretionary authority over the PM, and grants discretionary authority to the DA

over the policy domain it establishes for the mail system. This allows the DA to create the

necessary attributes, associations, and other relationships for each user to use the functionality of

the mail system. The DA also has the discretion to create subdomains and assign an SA to them.

The policy for this system with regard to users is also discretionary, since each user has the

freedom to use the established policy to share information with other users.

5.3.2 Operating System

The actions the PA takes to set up the initial authorization policy for a DA to administer the

DAC operating system described earlier mirror those given above for the mail system. Figure 16

below illustrates the policy element diagram and administrative associations the PA establishes

for the DA using the intra-policy class pattern. The DA, Users, and Objects attributes constitute

the key attributes of the DAC policy class. The user, u1011, is assigned as the DA. This example

again requires no SA and instead relies on the DA to manage the entire system.

Figure 16: Policy Elements and Associations for the DAC DA

Figure 17 illustrates the authorization graph for the DAC operating system, showing two typical

users, u1 and u2. The assignments, associations and prohibitions made by the DA are colored

blue. The defined policy is discretionary at the PA, DA, and user levels. The PA has full

discretionary authority over the PM. The PA in turn, grants discretionary authority to the DA

over the policy domain it establishes for the operating system, which allows the DA to create the

necessary attributes and associations between attributes for each user. The DA grants

administrative authority for any user to create associations that allow other users to selectively

access objects contained by its home container. The DA also has the discretion to create

subdomains and assign an SA to them, if it chooses.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 55

Figure 17: Authorization Graph for the DAC Operating System

5.4 Generic Access Rights

Generic access rights refer to the authority needed to carry out a related mode of access or action.

The examples given in this and the previous chapters allude to a variety of access rights needed

to structure policy for a system and establish levels of administration for governing the policy

over its lifetime. These generic access rights include authority to read and write objects, to

create and destroy various policy elements, and to form and rescind various types of

relationships between policy elements. This section discusses in detail a core set of access rights

for the PM model and explains how such authority can be utilized to specify access control

policy.

Two general classes of generic access rights exist. They are non-administrative access rights that

pertain to protected resources represented by objects, and administrative access rights that

pertain to a policy specification comprising the policy elements and relationships defined within

and maintained by the PM. The first class of generic access rights, as shown in Table 1, falls

into one type of access mode: input and output of data to and from protected resources

represented by objects, designated respectively as read and write operations. Protected resources

may be logical (e.g., files and folders) or physical (e.g., printers and networking components).

As mentioned previously, for non-administrative access rights, resource operations are

synonymous with the access rights needed to carry out those operations: to output data or write

to an object requires “w” (i.e., write) authority, and to input data or read from an object requires

“r” (i.e., read) authority.

Table 1: Generic Non-administrative Access Rights

Type Non-admin. Access Right Applies to Affects

Input/Output
Resources

r

w

Object attribute

Object attribute

Protected resource represented by
the object attribute or an object
contained by the object attribute
Protected resource represented by
the object attribute or an object
contained by the object attribute

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 56

The second class of generic access rights relate to one of four types of administrative actions: the

creation and deletion of policy elements, the creation and deletion of assignments between policy

elements that are contained within the same policy class, the creation and deletion of

assignments between policy elements that are each contained within a different policy class, and

the creation and deletion of associations, prohibitions, and obligations among policy elements.

Administrative access rights convey the authority to manipulate policy elements and relations

maintained by the PM, and thereby institute or update the policy specification for a system.

However, unlike non-administrative access rights, the authority associated with an administrative

access right is not necessarily synonymous with an administrative action. Instead, the authority

stemming from one or more administrative access rights may be required for a single action to be

authorized.

Table 2 below lists the generic administrative access rights for each type of access modality,

following the naming conventions for policy elements established in the previous chapters. In

both Tables 1 and 2, the “Applies to” column identifies the type of policy element to which the

mode of access relates, while the “Affects” column identifies the policy element or relation

affected.

Table 2: Generic Administrative Access Rights by Type

Type Administrative Access Right Applies to Affects

Create/Delete
Policy
Elements

c-u, d-u
c-ua, d-ua

c-o, d-o
c-oa, -oa

c-pc, d-pc

User attribute
User attribute,
Policy class
Object attribute
Object attribute,
Policy class
The conceptual
root policy node

User policy element
User attribute policy element

Object policy element
Object attribute policy element

Policy class policy element

Create/Delete
Assignments
(Intra-Policy
Class)

c-uua, d-uua

c-uaua, d-uaua

c-uapc, d-uapc

c-ooa, d-ooa

c-oaoa, d-oaoa

c-oapc, d-oapc

User attribute

User attribute

Policy class

Object attribute

Object attribute

Policy class

Assignment from a user to the
user attribute
Assignment from a user attribute
to the user attribute
Assignment from a user attribute
to the policy class
Assignment from an object to the
object attribute
Assignment from an object
attribute to the object attribute
Assignment from an object
attribute to the policy class

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 57

Type Administrative Access Right Applies to Affects

Create/Delete
Assignments
(Inter-Policy
Class)

c-uua-from, d-uua-from

c-uua-to, d-uua-to

c-uaua-from, d-uaua-from

c-uaua-to, d-uaua-to

c-uapc-from, d-uapc-from

c-uapc-to, d-uapc-to

c-ooa-from, d-ooa-from

c-ooa-to, d-ooa-to

c-oaoa-from, d-oaoa-from

c-oaoa-to, d-oaoa-to

c-oapc-from, d-oapc-from

c-oapc-to, d-oapc-to

User attribute

User attribute

User attribute

User attribute

User attribute

Policy class

Object attribute

Object attribute

Object attribute

Object attribute

Object attribute

Policy class

Assignment from a user element
in the referent’s subgraph to a
user attribute
Assignment from a user to a user
attribute element in the referent’s
subgraph
Assignment from a user attribute
element in the referent’s subgraph
to a user attribute
Assignment from a user attribute
to a user attribute element in the
referent’s subgraph
Assignment from a user attribute
element in the referent’s subgraph
to the policy class
Assignment from a user attribute
to the policy class
Assignment from an object
element in the referent’s subgraph
to an object attribute
Assignment from an object
attribute to an object attribute
element in the referent’s subgraph
Assignment from an object
attribute in the referent’s subgraph
to an object attribute element
Assignment from an object
attribute element to an object
attribute in the referent’s subgraph
Assignment from an object
attribute element in the referent’s
subgraph to a policy class
Assignment from an object
attribute to the policy class

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 58

Type Administrative Access Right Applies to Affects

Create/Delete
Multi-way
Relationships

c-assoc-from, d-assoc-from

c-assoc-to, d-assoc-to

c-admin-assoc-from, d-admin-assoc-
from

c-admin-assoc-to, d-admin-assoc-to

c-deny-from, d-deny-from

c-deny-to, d-deny-to

c-admin-deny-from, d-admin-deny-
from

c-admin-deny-to, d-admin-deny-to

c-oblig, d-oblig

c-admin-oblig, d-admin-oblig

User attribute

Object attribute

User attribute

Policy element

User, User attribute

Set of Object
attributes

User, User attribute

Set of Policy
elements

Policy element

Object attribute

Association involving a user
attribute element in the user
attribute’s subgraph and an object
attribute
Association involving a user
attribute and an object attribute
element in the object attribute’s
subgraph
Administrative association
involving a user attribute element
in the user attribute’s subgraph
and a policy element
Administrative association
involving a user attribute and a
policy element in the policy
element’s subgraph
Prohibition involving the user, a
process operating for the user, or
a user element in the referent user
attribute’s subgraph, and an object
Prohibition involving a user or
process, and an object element in
or outside the referent’s subgraph
Administrative prohibition involving
the user, a process operating for
the user, or a user element in the
referent user attribute’s subgraph,
and a policy element
Administrative prohibition involving
a user or process, and a policy
element in or outside the referent’s
subgraph
Obligation on an access request
involving the user or process
holding authorization
Obligation on an administrative
access request involving the user
or processing holding
authorization

The prefix “c-“ (i.e., for create) denotes the reification of a policy element or a relationship

between policy elements, as designated by its stem. Unlike non-administrative access rights and

actions, two or more administrative access rights are typically needed to carry out a single

administrative action on the policy representation. In addition administrative access rights are

typically allocated in conjunction with one another. For example, the authority to create a user

(c-u) with respect to a user attribute is not useful, if the authority to assign the user to the user

attribute (c-uua) is not also held. Similarly, the authority to create a policy element such as a

user (c-u) is not useful, if the authority to delete the policy element (d-u) is not also held.

Some administrative access rights are explicitly divided into two parts, as denoted by the “from”

and “to” suffixes. Both parts of the authority must be held to carry out the implied

administrative action. A case in point is the ability to form associations between policy elements

from different policy classes. A user must hold c-assoc-from authority over a user attribute in

one and c-assoc-to authority over an object attribute in the other to form an association between

them or other attributes that are in the subgraph of each. The correspondence between

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 59

administrative access rights and administrative activities is evidenced in the preconditions given

for each of the administrative commands listed in Appendix C.

While the lists of generic access rights in Tables 1 and 2 are complete, they are not intended to

be absolute. The control objectives of a policy may differ from one system to another and need

to be realized using a different set of access rights to capture and designate the appropriate

authority. For example, a requirement for higher level of assurance may dictate more granular

access rights, or a requirement for compliance with some prevailing law, regulation, or policy

may necessitate additional access rights. The modes of access allowed also depend on the types

of resources represented and on the functionality of the system

The computational environment may also influence the set of operations defined, and effect the

set of access rights required. Take, for instance, the write operation. If compatible with the

computational environment, this operation could be refined or augmented with a write-append

variant that allows a user to add additional data to an object, but does not allow a user to change

the previous contents of or view an object [NCSC87]. Allowing data to be added only at the

beginning or the end of an object would provide more control for maintaining audit information.

Similarly, the read operation, which includes the ability to execute an object, could be revised to

allow more granular control, and an explicit execute operation defined for this purpose (e.g.,

requiring an “e” access right to perform).

One other consideration that can influence the set of access rights is usability. While granular

access rights allow a fine degree of control, the sheer number can create difficulties when

assigning authority within a significantly sized policy specification. One solution is to

consolidate multiple access rights that are usually assigned together (e.g., c- and d- access rights)

into distinct sets and use those sets in lieu of individual access rights to assign a broad range of

authority collectively when defining policy.

In summary, access rights are abstractions of the levels of authorization possible within a

computational environment to support a given policy and, as abstractions, may be adjusted to fit

a unique situation. In practice, however, it is often the case that only some subset of the access

rights listed is needed to specify the policy for a particular system. For example, the policy

specified for the DAC operating system did not require the use of prohibitions or obligations,

thus related authorizations, involving access rights such as c-deny-to/from or c-oblig, were not

required.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 60

6. Multiple Policy Class Considerations

Some policy specifications, such as the inter-policy class pattern for expressing levels of policy

and administration discussed in the previous chapter, can involve more than one policy class.

Multiple policy class situations may arise when two or more policies, each represented by a

single policy class, are merged together and overlap to the extent that objects fall under each

policy. They can also occur when an administrator chooses to express a single policy using

multiple policy classes, even though the policy could be easily expressed with a single policy

class.

The basic PM framework discussed so far largely ignores policy specifications that involve

multiple policy classes. In order to handle these situations correctly, some slight adjustments to

the PM framework are needed. These adjustments specifically involve refining the way

privileges are derived for objects that are contained by two or more policy classes and the way

prohibitions are applied when two or more policy classes contain objects involved in the

prohibition. This chapter looks at the necessary refinements to the PM framework and provides

examples of policy specifications that involve multiple policy classes.

6.1 Association Refinements

Non-administrative associations are defined as a relation of the form ASSOC ⊆ UA×ARs×OA.

ASSOC is a set of ordered triples. Deriving privileges from a triple (ua, ars, oa) ∈ ASSOC

involves identifying all users that are contained by the first element of the triple, ua, all members

of the set the second element, ars, and all objects that are contained by the last element, oa. Each

combination of the three resultant sets forms a valid privilege of the form (u, ar, o).

A major difference when deriving privileges from associations in specifications that involve

multiple policy classes is that the policy classes containing the object attribute play a major role

in privilege derivation. In multiple policy class situations, the triple (u, ar, o) is a PM privilege,

iff for each policy class pcl that contains o, there exists an association (uai, arsj, oak), such that

user u ASSIGN+ uai, ar ∈ arsj, o ASSIGN* oak, and oak ASSIGN+ pcl. That is, a privilege

involving an object is valid, iff it can be derived with respect to each of the policy classes that

contain the object. This method of derivation works equally well when only a single policy class

prevails, since all objects are contained by the sole policy class.

Privileges can also be derived from the user’s or object’s perspective, by involving inherent

capabilities and inherent access entries respectively. That is, a triple (u, ar, o) is a privilege, iff,

for each policy class pcl that contains o, there exists a user attribute uai with an assigned or

inherited inherent capability (arsj, oak), such that o ASSIGN* oak, oak ASSIGN+ pcl, u ASSIGN

uai, and ar ∈ arsj. Similarly, the triple (u, ar, o) is a privilege, iff for each policy class pcl that

contains o, there exists an object attribute oak with an assigned or inherited inherent access entry

(uai, arsj), such that o ASSIGN* oak, oak ASSIGN+ pcl, u ASSIGN+ uai, and ar ∈ arsj.

Administrative privileges are derived similarly. Administrative associations are defined as a

relation of the form Admin_ASSOC ⊆ UA×AARs×PE. If multiple policy classes are involved,

the triple (u, aar, pe) is an administrative privilege, iff for each policy class pcl that contains pe,

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 61

there exists an administrative association (uai, aarsj, pek), such that user u ASSIGN+ uai, aar ∈

aarsj, pe ASSIGN* pek, and pek ASSIGN+ pcl.

6.2 Prohibition Refinements

As discussed earlier, non-administrative prohibitions are used to override access to objects based

on whether the objects are contained within or not contained within a set of object attributes.

Prohibitions in multiple policy class situations, like associations, also follow the precept that an

object and the policy classes containing the object have relevance when determining the scope of

a prohibition. The scope of a non-administrative prohibition can be defined as the set of object

attributes affected by the relation. Wherever the scope of a prohibition overlaps with that of a

policy class, the prohibition affects some, but not necessarily all of the same objects within the

policy class, which can potentially lead to difficulties in the specification and interpretation of

policies involving multiple policy classes.

Recall that the set of objects affected by a disjunctive user deny, (u, ops, oas, oacs) ∈

U_deny_disjunctive, where oas ⋃ oacs ≠ ∅, is the union of oai
 and oacj

, for all oai in oas and

all oacj in oacs (i.e., the set (oa1
 ⋃ oa2

 … ⋃ oan
) ⋃ (oac1

 ⋃ oac2
 … ⋃ oacm

)). Similarly,

for a conjunctive user deny, (u, ops, oas, oacs) ∈ U_deny_conjunctive, the set of objects affected

is the intersection of oai
 and oacj

, for all oai in oas and all oacj in oacs (i.e., the set (oa1
 ⋂ oa2



… ⋂ oan
) ⋂ (oac1

 ⋂ oac2
 … ⋂ oacm

)). The reasoning about the scope of user-based

prohibitions applies as well to disjunctive and conjunctive process-based prohibitions.

In both the conjunctive and disjunctive classes of user-based prohibitions, any member of the set

oas that is contained by a policy class does not present a problem when multiple policy classes

apply, since for each object attribute in oas, the scope of the prohibition is always a subset of the

scope of any policy class that contains the object attribute and affects the same set of objects.

Therefore, the existing definitions for prohibitions apply, without issue, in multiple policy class

situations where oacs is equal to the empty set and oas is not. However, when the reverse is true,

and oas is equal to the empty set and oacs is not, issues arise in the context of multiple policy

classes. The reason is that for each object attribute in oacs, although the scope of the prohibition

is a subset of the scope of any single policy class that contains the object attribute, the objects

affected are a vastly different set of objects that fall outside the policy class into one or more

other policy classes.

It is possible to redefine non-administrative prohibitions to restrict their scope solely to the scope

of the policy classes in which they appear. However, that same effect can be realized through

other means, such as constraining the prohibition to a specific policy class through the use of an

attribute contained by the policy class in the definition of the prohibition. Moreover, in some

cases, the broader unconstrained scope of a prohibition may match the target policy more closely

and produce the desired effect. For these reasons, no redefinition of non-administrative

prohibitions is considered necessary at this time. However, caution is advised when defining

prohibitions involving exclusory object attributes.

Because of the similarity in their structure, the same considerations apply to administrative

prohibitions as those discussed for non-administrative prohibitions. That is, the current

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 62

definition of administrative prohibitions is deemed sufficient at this time to express access

control policies accurately and no redefinition is necessary.

6.3 Obligation Refinements

The case of obligations is somewhat different from either that for associations or prohibitions.

Obligations are unaffected by multiple policy class considerations. The main reason policy

classes do not need special consideration is that the scope of control of an obligation is stipulated

by its event pattern, which is capable of defining explicitly whether one or more policy classes

pertain to the obligation. The PM reference mediation function plays no role in the processing of

an obligation’s event pattern. Therefore, the existing definition and treatment of obligations

remains valid and requires no adjustment.

Revised Notation for Multiple Policy Classes (MPC). Privilege derivation for multiple
policy class situations can be defined more formally as shown below.

▪ Privileges (revised for MPC): The ternary relation PRIV from U to AR to O.

 ∙ PRIV ⊆ U×AR×O

 ∙ u∈U, ar∈AR, o∈O: ((u, ar, o) ∈ PRIV  pc∈PC: (o ASSIGN+ pc 

 ∃ars∈ARs, ∃ua∈UA, ∃oa∈OA: ((ua, ars, oa) ∈ ASSOC ⋀

 u ASSIGN+ ua ⋀ ar ∈ ars ⋀ o ASSIGN* oa ⋀ oa ASSIGN+ pc)))

▪ Administrative Privileges (revised for MPC): The ternary relation Admin_PRIV from
U to AAR to PE.

 ∙ Admin_PRIV ⊆ U×AAR×PE

 ∙ u∈U, aar∈AAR, pe∈PE: ((u, ar, pe) ∈ Admin_PRIV 

 pc∈PC: (pe ASSIGN* pc 
 ∃aars∈AARs, ∃ua∈UA, ∃pei∈PE: ((ua, aars, pei) ∈ Admin_ASSOC ⋀

 u ASSIGN+ ua ⋀ aar ∈ aars ⋀ pe ASSIGN* pei ⋀ pei ASSIGN* pc)))

6.4 Amalgamated Policy Examples

Combining the access control policies of two or more systems can be done in a number of ways.

The resulting policy should make sense from a security standpoint and maintain the intended

security objectives asserted originally by each system individually. Ideally, the resulting policy

should also gain efficiency in operation of the administrative levels. For example, rather than

having redundant user policy elements to represent a user separately under each system policy,

only one set of policy elements could be maintained and applied to both.

The amalgamation of two or more systems together under a unified policy requires making some

assumptions about and adjustments to policy coverage and also to administrative responsibilities.

For instance, the degree of interdependence among policy authorities is an important factor.

While some duties may be shared between the authorities of each system, other may be allocated

exclusively to certain authorities to effect the required policy. The examples given below

illustrate the types of considerations involved in the amalgamation of system policies and the

types of trade-off decisions that can occur. Other, less involved examples are also available

elsewhere [Fer05, Fer11].

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 63

6.4.1 DAC and Email

As an example of an amalgamated policy specification that involves multiple policy class,

consider the operating system and mail system examples described earlier in this report. Each

system policy is expressed using a single policy class that involves an intra-policy class pattern

for administration. The individual policies are somewhat independent, insofar as the scope of

objects covered by each policy is distinct and non-overlapping. However, the set of users is

potentially the same for each system and overlaps considerably.

The main adjustment needed in this example is to determine how administrative duties over users

should be treated. The approach taken is to treat the operating system as foundational and a

prerequisite for use of the mail system. Accordingly, the PA assigns the entire responsibility for

creating and deleting users to the DA of the operating system (DA-OS). The DA for the mail

system (DA-MS) no longer creates or deletes a user, and instead, relies on the DA-OS to perform

this function. Once a user has been established by the DA-OS, the DA-MS can assign or

unassign mail containers to and from the user, thereby enabling and disabling the user’s

capability to use the mail system.

Figure 18 gives an example of a partial authorization graph illustrating the DAC segment of the

integrated DAC-Mail System policy. As before, user u1101 is the DA-OS for the DAC policy

class, and u1 and u2 are typical users of the system. The domain authority is created by the PA

(not shown) and establishes the users, objects, and relationships for the system. Those

relationships are shown in blue and gray, whereby the blue denotes administrative relations and

the gray denotes non-administrative relations.

Figure 18: DAC Segment of the Integrated System Policy

Figure 19 gives an example of a partial authorization graph illustrating the Mail System segment

of the integrated DAC-Mail System policy. User u1001 is the domain authority for the policy

class, and u1 and u2 are DAC users over which the DA-MS has been assigned authority from the

PA to establish objects and relationships that pertain exclusively to the mail system. The

relationships established for u2 are shown in red and gray, whereby the red denotes

administrative relations and the gray denotes non-administrative relations.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 64

Figure 19: Mail System Segment of the Integrated System Policy

An example of an entire authorization graph for the integrated system policy is shown in Figure

20. The DAC operating system objects and relations for user u2, which were shown in a Figure

18, are omitted to avoid an overly busy illustration.

Figure 20: Authorization Graph of the Integrated System Policy

Several inferences can be drawn from this example. The first is that policies grow very quickly

and become unwieldy to view in their entirety. The second is that administrative relationships,

particularly associations, exceed non-administrative ones with respect to the overall

authorization pattern. The third and final inference is that when amalgamating policies together,

establishing an approach that fits the needs of all policy stakeholders is an important prerequisite

to making any adjustments to existing policies.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 65

6.4.2 DAC and MAC

The following MAC policy is defined as an extension to the DAC policy discussed previously to

form an integrated DAC-MAC policy. A MAC policy is by its very nature comprehensive;

therefore, all existing users and objects need to be placed under it for compliance. Three security

levels pertain to this multi-level security policy extension: high, medium, and low. Security

levels are assigned to users and objects, and are also applicatory to processes working on behalf

of users. Users are assigned levels that represent their trustworthiness, while objects are assigned

levels that represent their sensitivity. A security level x is said to dominate a security level y, if x

is greater than or equal to y. In this example, the security level high dominates medium and low,

while medium dominates low.

The PA establishes the clearance and classification levels for the multi-level policy illustrated in

Figure 21. Since this part of the policy specification is mandatory and remains constant, there is

no need to have a DA manage the policy once it is specified. All users are assigned to one of

three user attributes that represent a user clearance. Users cleared to the high, medium, and low

levels of trust are assigned to the HT, MT, and LT user attributes respectively. Similarly, all

objects are assigned to one of three object attributes that represent a classification. Objects

classified at the high, medium, and low sensitivity levels are assigned to the HS, MS, and LS

object attributes. In this example, read means that information flows from the object to the user

(or one of its processes), which implies execute, while write means that information flows from

the user to the object.

Figure 21: Authorization Graph for the MAC Policy Segment

These policy assignments allow users and associated processes that are cleared at the high

security level to perform read operations on objects classified at the high, medium, and low

security levels. Users (and their processes) that are cleared at the medium level are allowed to

perform read operations only on objects classified at the medium and low levels. Finally, users

(and their processes) that are cleared low are allowed to perform read operations only on objects

classified at the medium and low levels. That is, the simple security property is reflected in the

policy.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 66

The approach typically used with the PM to prevent leakage of sensitive data to unauthorized

principals is to recognize when an authorized process reads sensitive information and then

constrain that process or its associated user from writing to objects accessible to any

unauthorized principals. This approach, which entails the use of obligations, is general enough

to support a large variety of policies that depend on the absence of leakage. Separation of duty

and other history-based policies can also be supported in a similar manner—recognizing when a

critical event occurs and taking action to constrain the process involved or its associated user

from taking an unwanted action or set of actions.

For this MAC example, to prevent a user’s process from writing to an object that is at a lower

security level than any object it has read, additional restrictions are needed. The obligations

specified for this policy to fulfill this objective are as follows:

When EC.op = read ⋀ EC.o ASSIGN* HS do

CreateConjunctiveP-Prohibition (EC.p, {w}, ∅, {HS})7

When EC.op = read ⋀ EC.o ASSIGN* MS do

CreateConjunctiveP-Prohibition (EC.p, {w}, ∅, {HS, MS})

The first obligation specifies that once a process successfully reads an object in the HS container,

a process prohibition is created to prevent the process from writing to objects that are outside the

HS container. Similarly, the second obligation specifies that once a process successfully reads an

object in the MS container, a process prohibition is created to prevent the process from writing to

objects outside MS or HS containers. The two obligations can also be written using the

disjunctive form of a process deny prohibition, as follows:

When EC.op = read ⋀ EC.o ASSIGN* HS do

CreateDisjunctiveP-Prohibition (EC.p, {w}, {LS, MS}, ∅)

When EC.op = read ⋀ EC.o ASSIGN* MS do

CreateDisjunctiveP-Prohibition (EC.p, {w}, {LS}, ∅)

The first obligation establishes that once a process successfully reads an object in the HS

container, the process cannot write to objects that are in the LS and MS containers. The second

establishes that once a process successfully reads an object in the MS container, the process

cannot write to objects that are in the LS container. These complimentary ways to state a process

deny prohibition for this policy are possible, since the LS, MS, and HS containers are mutually

exclusive and collectively exhaustive with respect to the objects of the DAC-MAC system.

Regardless of the form of the obligation pair used, the first successful read of an object by a

7 The semantics of the administrative command used in this obligation is essentially the same as that for the command

CreateDisjunctiveProcessProhibition given in Appendix C, with the exception thatthe preconditions for this command asserts that

the user who defined the obligation must hold sufficient authorization to execute the body of the command.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 67

process constrains the process to write only at or above the sensitivity level of the object,

consistent with the -property.

Adding the DAC policy specification discussed in earlier examples to the MAC policy

specification, results in the authorization graph illustrated in Figure 22. Note that the policy

specified up to this point is done by the PA. Going forward, the DA established by the PA has

responsibility to govern the users and objects of the system. One subtle extension made to the

DAC policy is that the DA must have the authority to assign users a security clearance via the

HT, MT, and LT attributes. This authority is represented in the authorization graph by the

administrative association from the DA user attribute in the DAC policy class to the Clearance

user attribute in the MAC policy class.

Figure 22: Authorization Graph for MAC-DAC system

One additional consideration concerning object creation is required, however. When an object is

created under the DAC policy, it is assigned to the home container of the user. A newly created

object also needs to be assigned an appropriate classification level under the MAC policy.

Different policies regarding object creation can be supported by the PM model. For the

integrated DAC-MAC policy, the policy is that the assigned classification level of the object

defaults to that of the user’s clearance. Figure 23 illustrates the policy applied to the object o1 in

the home container of user u1. Such assignments can be accomplished in one of two ways. The

first is to have the create object routine make the assignment directly. The second way is more

indirect and carried out through an administrative obligation that makes the assignment when

triggered by the creation of an object in an object attribute (i.e., a create-OinOA event).

For the first approach, the existing create object in object attribute command, as part of the

trusted computing base would be retained, and a slightly modified version that allows a user to

make classification assignments for newly created objects would be created and added to the

trusted computing base. Users would also need to be granted sufficient authority to execute the

new command via an administrative association. The enhanced object creation command in

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 68

effect consitutes an extension to the PM model, which can support not only this MAC policy, but

also similar types of lattice-based policies.

Figure 23: DAC-MAC Authorization Graph with Populated User

For the second approach, additional authority needs to be granted to the DA via an administrative

association from DA to Classification. That authority, coupled with the authority the DA already

holds over Objects, allows a DA to create obligations that exercise the DA’s authority to assign a

newly created object in the DAC policy class to an appropriate classification level in the MAC

policy class. The following set of administrative obligations is needed for this approach:

When AEC.aop = create-OinOA ⋀ AEC.u ASSIGN+ LT ⋀ ¬(AEC.u ASSIGN+ MT) do

CreateOinOAAssignment (AEC.argseq.1, LS)8

When AEC.aop = create-OinOA ⋀ AEC.u ASSIGN+ MT ⋀ ¬(AEC.u ASSIGN+ HT) do

CreateOinOAAssignment (AEC.argseq.1, MS)

When AEC.aop = create-OinOA ⋀ AEC.u ASSIGN+ HT do

CreateOinOAAssignment (AEC.argseq.1, HS)

The first obligation applies to users with LT clearance. For those users, it assigns objects newly

created within their home container to the LS classification container. The second and third

obligations carry out similar assignments of newly created objects to MS and HS containers for

8 The AEC.argseq of an administrative event context for an administrative access request involving the create-OinOA administrative

operation is [o, oa], where AEC.argseq.1 contains o, the identifier of the object that was created, and AEC.argseq.2 contains oa, the

identifier of the object attribute to which the object was assigned.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 69

users with MT and HT clearances respectively. The main drawback with this approach is that the

DA must be trusted to a greater degree than in the first approach, since the DA involvement is

needed to specify part of the MAC policy. However, given that the DA is already trusted to

assign newly created users to a clearance level, the additional responsibility is not unreasonable.

As with the original DAC system, other users have the discretion to grant user u1 the authority to

read or write objects they control, which are classified at the HS, MS, or LS sensitivity level.

However, because that authority must be held under both the DAC and MAC policy classes, the

multi-level restrictions defined in MAC prevail over any conflicting authority granted in DAC,

as would be expected. The reverse is also true. Even if a user has sufficient clearance to access

certain information under MAC, the user may not be given access to the information unless the

user has a specific need to know. That is, access to the information must be necessary to carry

out official duties and must be expressed via an explicit grant of authority.

One further improvement to the policy is possible. Note that under either approach, a user

currently can create an object only at the classification level equivalent to its clearance. If a user

is granted discretionary access by another use, it can write to an object at a lower level of

classification, provided that it has not read an object at a higher classification level. However, it

cannot create an object at a lower level of classification than its clearance equivalent and write to

it. With the first approach discussed above, this feature can be instituted easily by modifying the

enhanced create object in object attribute routine to create objects based on a classification level

argument supplied by the user. Existing prohibitions prevent writing to the object, if the user has

read an object at a higher classification level, as would be warranted. With the second approach,

however, this policy adjustment is not possible, because there is not a way for the user to convey

the intended security level to the prohibition making the assignment.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 70

7. Architecture

The PM functional architecture is intended to accommodate a number of different situations

using a variety of approaches. The architectural components of the PM are amenable to

implementation in both centralized and distributed systems. For the former, interactions between

the architectural components take place entirely within a computer system and the interfaces

between components are defined in terms of programing interfaces. For the latter, interactions

take place across a network and the same information is conveyed through a network protocol.

Many types of hybrid designs in which some components reside within a single system, while

others are located in other systems, are also possible. A separate decision to use either a

programming interface or network protocol for each interface may be made as appropriate,

because the two variants are functionally equivalent.

7.1 Architectural Components

The PM functional architecture involves several components that work together to bring about

controlled access to protected resources. The components include a Policy Enforcement Point

(PEP), a Policy Decision Point (PDP), an Event Processing Point (EPP), a Policy Administration

Point (PAP), a Policy Information Point (PIP), and a Resource Access Point (RAP). Figure 24

illustrates these components and their interfaces. Note that in this diagram the arrows represent

calls/messages between components. Typically, the calling/sending component waits for a

response from the called/receiving component, before continuing its operation. For simplicity,

the response is not shown in the diagram.

Figure 24: Architectural Components of the PM

Further details for each of the architectural components are as follows:

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 71

 Policy Enforcement Point. PM-aware applications must rely on a PEP to gain access to

protected resources and to policy information via a programming interface that it

provides. More than one PEP may exist to service applications. The PEP ensures that

access requests are validated as meeting the specified policy before access to the

resources in question occurs. To accomplish this objective, the PEP works in tandem

with a PDP and must not be bypassable.

The PEP conveys access requests issued by the application to a PDP for a reference

mediation decision. An application’s access request includes the identity of the

requestor, the requested operation, and the arguments of the operation, including the

targeted resource(s) and optional data. Both non-administrative and administrative

access requests are handled by the PEP.

For non-administrative resource requests that are denied, the PEP notifies the application

of an authorization failure. For requests that are granted, the PEP receives the Uniform

Resource Identifier (URI) for the physical resource in question. This enables the PEP to

carry out the requested access using the URI to identify the RAP, issue the appropriate

command(s) against it, and return the results to the application. The PEP also generates

an event after each access request it successfully executes, which conveys the event

context to the EPP.

Decisions on access requests involving administrative operations are handled somewhat

differently. For administrative requests that are denied, the PEP notifies the application

of an authorization failure. For requests that are granted, the PEP receives the results of

the administrative action taken against the abstract resources in the PIP, which the PDP

carries out itself via the PAP. The PEP does not generate events for access requests

carried out by the PDP.

 Policy Decision Point. A PDP determines whether an access request made by a PEP

complies with policy and renders a grant, deny, or error decision accordingly. The PDP

performs the reference mediation function defined in the PM model. It also carries out all

access requests that involve administrative operations for which a grant decision has been

rendered. Multiple PDPs may exist in the PM environment.

The PDP obtains the information it needs to validate the access request from the PIP via

the PAP. If an access is granted which involves a resource operation on a physical

resource, the PDP supplies the necessary details to the requesting PEP for locating and

accessing the resource. If denied, only the decision is conveyed back to the PEP. If an

access is granted which involves an administrative operation on the abstract data

structures of the PM, the PDP performs the access and supplies the results to the

requesting PEP along with the decision. The PDP also generates an event describing the

access, for eventual processing by the EPP.

The PDP also performs reference mediation for the EPP on obligations that the EPP has

matched to an event it received. In this situation, accesses that involve multiple

administrative actions must be mediated collectively, and if granted, carried out by the

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 72

PDP. The PDP also generates events describing the accesses, for eventual processing by

the EPP.

 Policy Information Point. The PIP contains the data structures that define the policy

elements and the relationships between policy elements that collectively constitute the

access control policy enforced by the PM. All changes to the policy occur at the PIP, but

originate from the PAP. The PIP must ensure that transactions issued by the PAP are

processed reliably and efficiently.

The implementation strategy and efficiency tradeoffs for derived relations (e.g.,

privileges) are an important performance consideration. Derived relations act as a single

relation, even though they rely on information from one or more other base relations.

Data structures representing derived relations may be virtual and computed as needed.

However, continual reevaluation of the relation that can affect the performance of the

PIP. Derived relations may also be materialized such that the tuples resulting from

evaluating the relation over the current instances of the base relations are actually

maintained continuously.

 Resource Access Point. A RAP allows one or more PEPs to gain access to protected

resources. The only method of accessing protected resources is via a RAP. Multiple

RAPs can exist, but each protected resource is accessible only through a single RAP.

The PEP issues a command containing its identifier, the location of the physical resource,

the operation, and any required data to the RAP. The RAP returns data and status

information to the PEP. The RAP does not allow access to resources to any entity other

than a PEP.

 Policy Administration Point. A single PAP manages all access to the contents of the

PIP, similar to the way a RAP serves as a managed access point to protected resources.

A PAP provides read, modify, and write access to the data contained within the PIP (i.e.,

the policy configuration), and ensures that access is serialized. A PAP limits the EPP to

read access only, but allows a PDP both read and write access.

 Event Processing Point. A single EPP is responsible for comparing events against event

patterns that have been defined in obligations residing at the PIP. For each event that is

matched, the EPP uses a PDP to perform reference mediation on the associated event

response (i.e., the sequence of administrative actions defined for each obligation), to

carry out the response, if access is granted, and also to generate events describing each

access. The EPP can be viewed as a transaction processing monitor, whose performance

is crucial to the overall effectiveness of the architecture. To avoid contention for

accessing a PDP, one of them can be collocated with the EPP and designated for its

exclusive use.

The PM model separates the policy expression, represented by the data elements and

relationships maintained in the PIP, from the mechanisms that enforce the policy, contained

mainly in the PEP and PDP, and supported by the PAP and RAP. The EPP can be regarded as an

automation facility for defining administrative actions that must be taken immediately after the

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 73

occurrence of certain, predefined, successfully executed access requests. While the EPP is not

needed to express all security policies, for some, such as those that involve separation of duty

constraints, it is essential.

The architecture of the PM lends itself to a range of implementation choices, as mentioned

earlier. One interesting aspect is that the more distributed a system implementation becomes, the

greater the propensity is for race conditions to arise. The main source of contention is that access

request decisions taken by one set of components are carried out by others, all of which are

acting concurrently against shared resources. To complicate matters further, event-driven

administrative actions taken automatically may occur, which also affect the state of shared

resources. Undesired, inconsistent results can ensue unless methods are in place to allow critical

sections of an execution stream to be executed atomically.

7.2 Client Applications

A user signs onto the PM from a client system typically through a Graphical User Interface

(GUI). A successful signon opens a user session with the PM environment.

A user can have only a single PM session open at any time. Within a session, a logical view can

be rendered for the user, which displays all of the user’s accessible resources, such as files, e-

mail messages, and work items. As an alternative, the user can be presented with a view of

available resource categories and prompted to select a specific set of accessible resources.

Within either approach, the user launches applications via resource selection and initiates

processes that request access to resources protected by the PM. Changes in policy can affect the

user’s view of accessible resources and must be reflected immediately.

PM-aware applications require the use of a PEP to access protected resources. The PEP provides

an Application Programming Interface (API) for developing PM-compliant applications. As

shown in Figure 25, the PEP API is the only means available for an application to interact with

the PM environment and gain access to protected resources. Alternatively, existing applications

developed without the PM in mind can be adapted for the PM by intercepting access requests at

key points in the code and converting them to calls on the PEP interface, for eventual mediation

by the PDP. The physical location of each object is unknown to the application, but is known to

the PM and is included with each access request that is granted by the PDP. The PEP enforces

the PDP’s decision, granting or rejecting the access to the object from the application’s

processes.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 74

Figure 25: Application’s Perspective of the PM Environment

Applications that conduct administrative actions on policy structures work a bit differently.

Take, for example, a policy manager application developed to allow an administrator to render

part of the PM’s current policy configuration within its domain (e.g., in the form of an

authorization graph), to navigate the configuration, and to create and delete policy elements and

relations between policy elements (i.e., assignments, associations, prohibitions, and obligations).

While such an application would use a PEP as other PM-aware applications do, the requested

administrative actions do not involve protected physical resources and instead, pertain

exclusively to abstract resources—the policy structures maintained within the PM environment

at the PIP.

7.3 Security Considerations

The effectiveness of the PM architecture to control access depends on adequately protecting the

data elements and relationships that represent the security policy, and also the PM components

that contain the mechanisms for policy enforcement. It is also critical that the PM components

enforcing policy cannot be bypassed. Potential adversaries may involve more than one

legitimate user working in collaboration to defeat access control to PM protected resources, as

well as non-legitimate external parties. Adversaries may have access to the data paths between

components and be able to eavesdrop on exchanges.

PM entities are trusted parties that must work together closely to ensure reference mediation is

carried out correctly. Authentication protocols enable one entity to prove its claimed identity to

another entity, typically through some cryptographic means. In a distributed system where

several entities of the same type exist (e.g., multiple PDPs), it may be necessary to find an

available entity to use from amongst them. Since the potential for an attacker to masquerade as a

trusted entity exists (e.g., via a man-in-the-middle attack), authentication between PM

components is an important safeguard for verifying that an entity is what it claims to be. In

addition, authentication can prevent PM components from being bypassed by an attacker.

However, authentication protocols are complex, and because of the complexity involved,

implementations can be done incorrectly and result in vulnerabilities such as incorrect

interpretation of credentials.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 75

Distributed entities rely on networks communications to interoperate. Without sufficient

safeguards in place, messages transmitted between PM entities are potentially susceptible to

attack by malicious third parties. Security protocols are complex, which often leads to

implementations containing errors that allow exploitation. Protocols may also contain design

flaws that lend themselves to exploitation. Protocol attacks may involve message replay, content

analysis, deletion, and modification attacks and result in unauthorized disclosure, policy

circumvention, state corruption, violation of privacy, or denial of service. Single-occurrence PM

components such as the PAP can be particularly attractive targets for denial of service attacks,

since they represent choke points in the access control mechanism.

The PEP, PDP, PAP, and other PM components may themselves contain vulnerabilities that

could be exploited to compromise the access control policy and its enforcement by the PM. For

example, race conditions between components, discussed earlier, may result in time-of-

check/time-of-use vulnerabilities. Other components of a distributed system on which the PM

components depend, such as a virtual machine monitor, operating system, or domain-name

system (DNS) resolver, may also be exploited and lead to a policy compromise. Similarly,

systems supporting client applications and also the client applications themselves may contain

vulnerabilities susceptible for exploitation. Even if the PM implementation functions perfectly,

transactions stemming from the application may be forged, or intercepted and modified on the

client system before the PM components are involved.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 76

8. References

[Bre89] D.F.C. Brewer and M.J. Nash, “The Chinese Wall Security Policy,” 1989 IEEE

Symposium on Security and Privacy, Oakland, California, USA, May 1-3, 1989, pp.

206-214. http://dx.doi.org/10.1109/SECPRI.1989.36295.

[Fer05] D.F. Ferraiolo, .I. Gavrila, V.C. Hu, and D.R. Kuhn, “Composing and Combining

Policies Under the Policy Machine,” Tenth ACM Symposium on Access Control

Models and Technologies (SACMAT ‘05), Stockholm, Sweden, 2005, pp. 11-20.

http://dx.doi.org/10.1145/1063979.1063982.

https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf [accessed 3/6/14].

[Fer11] D.F. Ferraiolo, V. Atluria, and S.I. Gavrila, “The Policy Machine: A Novel

Architecture and Framework for Access Control Policy Specification and

Enforcement,” Journal of Systems Architecture, vol. 57, no. 4, pp. 412-424, April

2011. http://dx.doi.org/10.1016/j.sysarc.2010.04.005.

[Gra72] G.S. Graham and P.J. Denning, “Protection: Principles and Practice,” Spring Joint

Computer Conference (AFIPS ’72 (Spring)), Atlantic City, New Jersey, USA, May

16-18, 1972, pp. 417-429. http://dx.doi.org/10.1145/1478873.1478928.

[Har76] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman, “Protection in Operating Systems,”

Communications of the ACM, vol. 19, no. 8, pp. 461-471, August 1976.

http://dx.doi.org/10.1145/360303.360333.

[Hu06] V.C. Hu, D.F. Ferraiolo, and D.R. Kuhn, “Assessment of Access Control Systems,”

NISTIR 7316, National Institute of Standards and Technology, Gaithersburg,

Maryland, USA, September 2006, 60 pp. http://www.nist.gov/manuscript-

publication-search.cfm?pub_id=50886 [accessed 3/6/14].

[Kuh98] D.R. Kuhn, “Role Based Access Control on MLS Systems Without Kernel Changes,”

Third ACM Workshop on Role Based Access Control (RBAC ’98), Fairfax, Virginia,

USA, October 22, 1998, pp. 25-32. http://dx.doi.org/10.1145/286884.286890.

http://csrc.nist.gov/groups/SNS/rbac/documents/design_implementation/kuhn-98.pdf

[accessed 3/6/14].

[Lam71] B. Lampson, “Protection,” Proceedings of the 5th Princeton Conference on

Information Sciences and Systems, Princeton, New Jersey, USA, March 1971.

Reprinted in ACM Operating Systems Review, vol. 8, no. 1 (Jan. 1974), pp. 18-24.

http://dx.doi.org/10.1145/775265.775268.

[Li05] N. Li and M.V. Tripunitara, “On Safety in Discretionary Access Control,” 2005 IEEE

Symposium on Security and Privacy, Oakland, California, USA, May 8-11, 2005, pp.

96-109. http://dx.doi.org/10.1109/SP.2005.14.

http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1145/1063979.1063982
https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://dx.doi.org/10.1145/1478873.1478928
http://dx.doi.org/10.1145/360303.360333
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=50886
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=50886
http://dx.doi.org/10.1145/286884.286890
http://csrc.nist.gov/groups/SNS/rbac/documents/design_implementation/kuhn-98.pdf
http://dx.doi.org/10.1145/775265.775268
http://dx.doi.org/10.1109/SP.2005.14

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 77

[NCSC87] A Guide to Understanding Discretionary Access Control in Trusted Systems, NCSC-

TG-003, Version-1, National Computer Security Center, Fort George G. Meade,

Maryland, USA, September 30, 1987, 29 pp.

http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt [accessed 3/6/14].

[Osb00] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring Role-Based Access Control to

Enforce Mandatory and Discretionary Access Control Policies,” ACM Transactions

on Information and System Security (TISSEC), vol. 3, no. 2, pp. 85-106, May 2000.

http://dx.doi.org/10.1145/354876.354878.

[San92] R.S. Sandhu, “Lattice-Based Enforcement of Chinese Walls,” Computers and

Security, vol. 11, no. 8, pp. 753-763, December 1992.

http://profsandhu.com/journals/csec/csec92-cwall-org.pdf [accessed 3/6/14].

[San94] R.S. Sandhu and P. Samarati, “Access Control: Principles and Practice,” IEEE

Communications Magazine, vol. 32, no. 9, pp. 40-48, September 1994.

http://dx.doi.org/10.1109/35.312842.

[Sha13] A. Sharifi, M.V. Tripunitara, “Least-Restrictive Enforcement of the Chinese Wall

Security Policy,” 18th ACM Symposium on Access Control Models and Technologies

(SACMAT ’13), Amsterdam, The Netherlands, June 12-14, 2013, pp. 61-72.

http://dx.doi.org/10.1145/2462410.2462425.

[Sal75] J.H. Saltzer and M.D. Schroeder, “The Protection of Information in Computer

Systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, September 1975.

http://dx.doi.org/10.1109/PROC.1975.9939.

[Tri04] M.V. Tripunitara and N. Li, “Comparing the Expressive Power of Access Control

Models,” 11th ACM Conference on Computer and Communications Security (CCS

’04), Washington, DC, USA, October 25-29, 2004, pp. 62-71.

http://dx.doi.org/10.1145/1030083.1030093.

[Tri06] M.V. Tripunitara and N. Li, The Foundational Work of Harrison-Ruzzo-Ullman

Revisited, CERIAS Tech Report 2006-33, Center for Education and Research in

Information Assurance and Security, Purdue University, West Lafayette, Indiana,

USA, 2006, 17 pp. https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2006-

33.pdf [accessed 3/6/14].

http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt
http://dx.doi.org/10.1145/354876.354878
http://profsandhu.com/journals/csec/csec92-cwall-org.pdf
http://dx.doi.org/10.1109/35.312842
http://dx.doi.org/10.1145/2462410.2462425
http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1145/1030083.1030093
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2006-33.pdf
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2006-33.pdf

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 78

Appendix A—Acronyms

API Application Programming Interface

DA Domain Administrator

DAC Discretionary Access Control

DNS Domain Name System

EPP Event Processing Point

MAC Mandatory Access Control

MS Mail System

PA Principal Authority

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PM Policy Machine

RAP Resource Access Point

SA Sub-domain Administrator

S2A Sub-SA

S3A Sub-S2A

URI Uniform Resource Identifier

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 79

Appendix B—Notation

The empty set is denoted by ∅.

The powerset of a set S is the set of all subsets of S, including the empty set, and is denoted by

2S.

A finite sequence in a set S is a function from {1, 2, ..., n} to S for some n > 0. The kth element

is denoted as sk, and the entire sequence as s1, s2, ..., sn.

A list is an ordered, finite collection of items from one or more sets. The kth element is denoted

as lk, and the entire sequence as [l1, l2, ..., ln].

The cardinality of a set S is defined as the number of elements of the set and denoted by |S|.

The union between two sets, S1 and S2, is defined as {x | (x∈S1 or x∈S2) or (x∈S1 and S2)},

and is denoted by S1 ⋃ S2.

The intersection between two sets, S1 and S2, is defined as {x | x∈S1 and x∈S2}, and is denoted

by S1 ⋂ S2.

The Cartesian product or cross product of two sets, S1 and S2, is defined as {(x, y) | x∈S1 and

y∈S2}, and is denoted by S1 × S2.

The relative complement of the set S2 in the set S1, also known as the set theoretic difference

between S1 and S2, is defined as {x | x∈S1 and x∉S2}, and is denoted by S1 – S2.

The absolute complement of a set S, denoted by ̅S ̅, is the set of elements not in S, but in the

universal set of all elements, U (i.e., ̅S ̅ = U – S). For the notation used in the PM model, U is

equal to PE, the set of all policy elements.

R is a binary relation on a set S, iff R ⊆ S × S.

R is a binary relation from the set S1 to the set S2, iff R ⊆ S1 × S2.

An ordered pair from the relation R is denoted by either (x, y) ∈ R or x R y.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 80

List of Common Symbols:

= equality

≠ inequality
≝ definition

 material implication (i.e., implies)

 material equivalence (i.e., iff)
¬ logical negation

∃ existential quantification
∃! uniqueness quantification

∄ existential quantification negation (i.e., ¬∃)

∀ universal quantification
⋀ logical conjunction

⋁ logical disjunction

Precedence among logical operators given in descending order is as follows: ¬, ∀ and ∃,

⋀, ⋁, , . All operators are right associative.

∅ empty set (i.e., { })
∈ set membership

∉ set membership negation

⊆ subset
⊂ proper subset

⊇ superset

⊃ proper superset
̅ ̅ ̅ absolute complement of a set
– set-theoretic difference

⋃ set-theoretic union

⋂ set-theoretic intersection
x Cartesian product
2S power set of set S
|S| cardinality of set S

R+ the transitive closure of the assignment relation R

R* the reflexive and transitive closure of the assignment relation R
x object range of a policy element x
x complementary object range of a policy element x
x element range of a policy element x
x complementary element range of a policy element x

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 81

Appendix C—Semantics of Administrative Routines and Commands

The PM access control model is a finite state machine. The policy elements and the relations that

define the access rights between these entities, constitute the authorization state of one or more

policies maintained by the PM. Changes in state occur through transitions. A state transition

occurs whenever an access request involving an administrative action is granted by the reference

mediation function and carried out. A change in state may also occur when an obligation is

triggered and its response carried out.

Administrative routines and commands provide the capability to represent and transition state

through the creation, deletion and maintenance of PM policy elements and relations.

Administrative routines constitute the range of primitive actions that can be taken against the

policy elements and relationships of the PM. Administrative commands are a composition of

administrative routines, which are used to define more complex administrative actions.

Administrative routines are executed on behalf of a user via administrative commands. This

appendix contains a complete list of the core administrative routines and commands of the PM

and their semantic definition.

The semantic description of an administrative routine or command differs from a syntactic

description or programming language representation. The semantic descriptions define the

correct behavior expected of routines and commands, necessary to maintain the security

properties of the PM as it operates and transitions between states. The specifications should not

be interpreted as programming statements, and instead be interpreted as changes to model

structures that occur when a command or routine is correctly invoked. Behavioral aspects other

than security are outside the scope of these descriptions.

Preconditions are defined for each administrative routine and command. Preconditions denote

requirements. They are expressed as a logical expression that must be satisfied for the routine or

command to be carried out. The preconditions for administrative routines ensure validation that

the arguments supplied for the formal parameters of the routine are of the correct type, and that

the basic properties of the model are observed. One small exception applies regarding the PC-

reachability property (i.e., for all x in PE, there exists a policy class pc, such that x ASSIGN*

pc). The preconditions for administrative commands are similar to those of routines, but in

addition, ensure validation that the process involved in the access has sufficient authorization to

carry out the command, and that the PC-reachability property is maintained consistently.

Validation that sufficient authorization to carry out a command is performed during reference

mediation, based on the required capabilities returned by the ReqCap and ReqACap functions.

The following conventions are observed in the semantic descriptions given below:

 Administrative routines and commands are atomic; their effects are indivisible and

uninterruptable.

 The main body of an administrative routine or command specifies state changes for those

model elements and relations that are affected by its execution—the state of any

unspecified element or relation is unaffected and remains unchanged.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 82

 Model elements and relations, whose state changes with the execution of an

administrative routine or command, are indicated with the prime symbol.

 All specified preconditions must be satisfied for the change of state described in the body

of the routine or command to occur. More simply stated, no state changes occur unless

the preconditions are satisfied.

 Comments may appear in the semantic descriptions; single line comments begin with a

double backslash, and multiline comments begin with a backslash followed by an asterisk

and end with an asterisk followed by a backslash.

 The formal parameters of an administrative routine and command serve individually as

either an input or output to the routine or command, but never as both an input and an

output.

To simplify the specification of preconditions, liberities were taken with some of the notation

used; namely, the tuples of a relation are treated as members of a set when the predicate calculus

qualifiers ∃, ∄, and ∀ are applied. For example, a triple of the relation ASSOC has three

elements: a user attribute, a set of access rights, and an object attribute. To specify that a triple

(a, b, c) of ASSOC with the property a=x does not exist would normally be done as follows:

∀a∈UA, ∀b∈ARs, ∀c∈OA: ¬((a, b, c) ∈ ASSOC ⋀ a = x)

Instead, this formula is expressed in the preconditions as follows:

∄(a, b, c) ∈ ASSOC: a = x

The qualifier in the latter shorthand expression more succinctly denotes both the set membership

of each element of the tuple and the tuple membership (or rather, the lack thereof) with the

relation. Full predicate calculus notational equivalencies of shorthand expressions involving an

existential or universal quantifier (i.e., ∄ in the above formula replaced by ∃ or ∀ respectively)

also exist.

C.1 Element Creation Routines

The routines below specify the semantics for the routines used to create the various policy

elements of the model. No preconditions apply, since variables supplied as arguments pertain

only to output parameters.

Instantiation(set), returns id

{

 /* a semantic function that denotes the allocation of an instance of an entity

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 83

 comparable to members of a specified set and returns a unique identifier for

the entity */ 9

 }

CreateU(x)

 {

 x′ = Instantiation (U) // x′ is the unique identifier of the new policy element

U′ = U ⋃ {x′}

 }

CreateUA(x)

{

x′ = Instantiation(UA)

UA′ = UA ⋃ {x′}

 }

CreateO(x)

 {

x′ = Instantiation(O)

O′ = O ⋃ {x′}

OA′ = OA ⋃ {x′}

 }

CreateOA(x)

{

x′ = Instantiation(OA)

OA′ = OA ⋃ {x′}

 }

CreatePC(x)

{

x′ = Instantiation(PC)

PC′ = PC ⋃ {x′}

 }

CreateP(x)

{

x′ = Instantiation(P)

P′ = P ⋃ {x′}

 }

9 Unique system-generated identifiers are essential for determining whether two references pertain to the same entity. This is

particularly in situations where the name of an entity can change or an entity can be referenced in multiple ways. To avoid covert

channels, the pattern of successive identifiers generated should not be predictable.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 84

C.2 Element Deletion Routines

The routines below specify the semantics for the routines used to delete the various policy

elements of the model. Besides ensuring that the arguments supplied for the formal parameters

of a routine are valid, the preconditions specified for these routines also ensure that certain model

properties are preserved. The policy element in question must not be involved in any defined

relation. For example, if a user attribute is involved in an assignment, association, or prohibition

relation, the attribute cannot be deleted until it is no longer involved in the relation.

Disinstantiation(x), returns nihil

{

 /* a semantic function that denotes the deallocation of an instance of an entity

with the identifier x */

 }

DeleteU(x)

 x ∈ U ⋀ ∄y ∈ UA: x ASSIGN+ y

 // ensure no processes that operate on behalf of x exist

 ∄p ∈ P: x = process_user(p)
 // ensure no assignments stemming from the user exist

 ∄(a, b) ∈ ASSIGN: x = a

 // ensure no prohibitions exist that involve the user

 ∄(a, b, c, d) ∈ U_deny_disjunctive: a = x

 ∄(a, b, c, d) ∈ U_deny_conjunctive: a = x

 ∄(a, b, c, d) ∈ U_Admin_deny_disjunctive: a = x

 ∄(a, b, c, d) ∈ U_Admin_deny_conjunctive: a = x

 // ensure no obligations exist defined by the user

 ∄(a, b, c) ∈ OBLIG: a = x

{

U′ = U – {x}

 x′ = Disinstantiation(x)

 }

DeleteUA(x)

 x ∈ UA

 // ensure no assignments involving the user attribute exist

 ∄y ∈ UA: (x ASSIGN+ y ⋁ y ASSIGN+ x)

 // an alternative expression for the above: ∄(a, b) ∈ ASSIGN: (x = a ⋁ x = b)

 ∄y ∈ PC: x ASSIGN+ y

 // no associations or prohibitions must exist in which the ua involved

 ∄(a, b, c) ∈ ASSOC: x = a

 ∄(a, b, c) ∈ Admin_ASSOC: (x = a ⋁ x = c)

 ∄(a, b, c, d) ∈ UA_deny_disjunctive: x = a

 ∄(a, b, c, d) ∈ UA_deny_conjunctive: x = a

 ∄(a, b, c, d) ∈ UA_Admin_deny_disjunctive: x = a

 ∄(a, b, c, d) ∈ UA_Admin_deny_conjunctive: x = a

{

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 85

UA′ = UA – {x}

x′ = Disinstantiation(x)

 }

DeleteO(x)

 x ∈ O ⋀ x ∈ OA

 ∄y ∈ OA: (x ASSIGN+ y ⋁ y ASSIGN+ x)

 ∄y ∈ PC: x ASSIGN+ y

 ∄(a, b, c) ∈ ASSOC: x = c

 ∄(a, b, c) ∈ Admin_ASSOC: x = c

 // ensure no prohibitions exist that involve the object attribute

 ∄(a, b, c, d) ∈ U_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ P_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ U_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ P_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ U_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ P_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ U_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ P_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ UA_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ UA_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ UA_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ UA_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

{

O′ = O – {x}

OA′ = OA – {x}

 x′ = Disinstantiation(x)

 }

DeleteOA(x)

 x ∈ OA ⋀ x ∉ O

 ∄y ∈ OA: (x ASSIGN+ y ⋁ y ASSIGN+ x)

 ∄y ∈ PC: x ASSIGN+ y

 ∄(a, b, c) ∈ ASSOC: x = c

 ∄(a, b, c) ∈ Admin_ASSOC: x = c

 // ensure no prohibitions exist that involve the object attribute

 ∄(a, b, c, d) ∈ U_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ P_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ U_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ P_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ U_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ P_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ U_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ P_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

 ∄(a, b, c, d) ∈ UA_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ UA_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 86

 ∄(a, b, c, d) ∈ UA_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d)

 ∄(a, b, c, d) ∈ UA_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

{

OA′ = OA – {x}

x′ = Disinstantiation(x)

 }

DeletePC(x)

 x ∈ PC
 ∄(a, b) ∈ ASSIGN: x = b // ensure no assignments emanating to the policy class exist

 // ensure no associations exist in which the policy class is the third element of the tuple

 ∄(a, b, c) ∈ ASSOC: x = c

 ∄(a, b, c) ∈ Admin_ASSOC: x = c

{

PC′ = PC – {x}

x′ = Disinstantiation(x)

 }

DeleteP(x)

 x ∈ P ⋀ ∄u ∈ U: u = process_user(x)

 // ensure no prohibitions exist that involve the process

 ∄(a, b, c, d) ∈ P_deny_disjunctive: a = x
 ∄(a, b, c, d) ∈ P_deny_conjunctive: a = x

 ∄(a, b, c, d) ∈ P_Admin_deny_disjunctive: a = x

 ∄(a, b, c, d) ∈ P_Admin_deny_conjunctive: a = x

{

P′ = P – {x}

x′ = Disinstantiation(x)

 }

C.3 Relation Formation Routines

Besides ensuring that the arguments supplied for the formal parameters of a routine are valid, the

preconditions specified below must also maintain certain model properties. An attempt to add

tuple that already exists to a relation presents no problem, due to the set operation involved.

CreateAssign(x, y)

 ((x ∈ U ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ PC) ⋁
 (x ∈ OA ⋀ y ∈ (OA – O) ⋁ (x ∈ (OA– O) ⋀ y ∈ PC))

 x ≠ y

 ∄a sequence s1,s2,...,sn in PE: (n > 1 ⋀ sn ASSIGN s1 ⋀ (si ASSIGN si+1 for i = 1,2,...,n-1))

{

ASSIGN′ = ASSIGN ⋃ {(x, y)} // union precludes a duplicate assignment precondition

}

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 87

CreatePUmapping(x, y)

 x ∈ P ⋀ y ∈ U

 {

process_user′ = process_user ⋃ {(x, y)}

}

CreateAssoc(x, y, z)

 x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ OA

 {

ASSOC′ = ASSOC ⋃ {(x, y, z)}

}

CreateAdminAssoc(x, y, z)

 x ∈ UA ⋀ y ∈ AARs ⋀ z ∈ PE

 {

Admin_ASSOC′ = Admin_ASSOC ⋃ {(x, y, z)}

}

CreateU_deny_disjunctive(w, x, y, z)

 w ∈ U ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 {

U_deny_disjunctive′ = U_deny_disjunctive ⋃ {(w, x, y, z)}

}

CreateP_deny_disjunctive(w, x, y, z)

 w ∈ P ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 {

P_deny_disjunctive′ = P_deny_disjunctive ⋃ {(w, x, y, z)}

}

CreateUA_deny_disjunctive(w, x, y, z)

 w ∈ UA ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 {

UA_deny_disjunctive′ = UA_deny_disjunctive ⋃ {(w, x, y, z)}

}

CreateU_Admin_deny_disjunctive(w, x, y, z)

 w ∈ U ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 {

U_Admin_deny_disjunctive′ = U_Admin_deny_disjunctive ⋃ {(w, x, y, z)}

}

CreateP_Admin_deny_disjunctive(w, x, y, z)

 w ∈ P ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 {

P_Admin_deny_disjunctive′ = P_Admin_deny_disjunctive ⋃ {(w, x, y, z)}

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 88

}

CreateUA_Admin_deny_disjunctive(w, x, y, z)

 w ∈ UA ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 {

UA_Admin_deny_disjunctive′ = UA_Admin_deny_disjunctive ⋃ {(w, x, y, z)}

}

The conjunctive forms of user, user attribute, and process-based prohibition formation are

defined similarly to their disjunctive counterparts above.

CreateOblig(x, y, z)

 x ∈ U ⋀ y ∈ Pattern ⋀ z ∈ Response

{

Oblig′ = Oblig ⋃ {(x, y, z)}

}

CreateAdminOblig(x, y, z)

 x ∈ U ⋀ y ∈ Pattern ⋀ z ∈ Response

{

AdminOblig′ = AdminOblig ⋃ {(x, y, z)}

}

C.4 Relation Rescindment Routines

Besides ensuring that the arguments supplied for the formal parameters of a routine are valid, the

preconditions must also maintain certain model properties. An attempt to delete a tuple that does

not exist from a relation presents no problem, due to the set operation involved.

DeleteAssign(x, y)

 ((x ∈ U ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ PC) ⋁
 (x ∈ OA ⋀ y ∈ (OA – O)) ⋁ (x ∈ (OA – O) ⋀ y ∈ PC))

{

ASSIGN′ = ASSIGN – {(x, y)}

}

DeletePUmapping(x, y)

 x ∈ P ⋀ y ∈ U

 {

process_user′ = process_user – {(x, y)}

}

DeleteAssoc(x, y, z)

 x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ OA

 {

ASSOC ′ = ASSOC – {(x, y, z)}

}

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 89

DeleteAdminAssoc(x, y, z)

 x ∈ UA ⋀ y ∈ AARs ⋀ z ∈ PE

 {

Admin_ASSOC′ = Admin_ASSOC – {(x, y, z)}

}

DeleteU_deny_disjunctive(w, x, y, z)

 w ∈ U ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 {

U_deny_disjunctive′ = U_deny_disjunctive – {(w, x, y, z)}

}

DeleteP_deny_disjunctive(w, x, y, z)

 w ∈ P ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 {

P_deny_disjunctive′ = P_deny_disjunctive – {(w, x, y, z)}

}

DeleteUA_deny_disjunctive(w, x, y, z)

 w ∈ UA ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 {

UA_deny_disjunctive′ = UA_deny_disjunctive – {(w, x, y, z)}

}

DeleteU_Admin_deny_disjunctive(w, x, y, z)

 w ∈ U ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 {

U_Admin_deny_disjunctive′ = U_Admin_deny_disjunctive – {(w, x, y, z)}

}

DeleteP_Admin_deny_disjunctive(w, x, y, z)

 w ∈ P ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 {

P_Admin_deny_disjunctive′ = P_Admin_deny_disjunctive – {(w, x, y, z)}

}

DeleteUA_Admin_deny_disjunctive(w, x, y, z)

 w ∈ UA ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 {

UA_Admin_deny_disjunctive′ = UA_Admin_deny_disjunctive – {(w, x, y, z)}

}

The conjunctive forms of user, user attribute, and process-based prohibition rescindment are

defined similarly to their disjunctive counterparts above.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 90

DeleteOblig(x, y, z)

 x ∈ U ⋀ y ∈ Conditions ⋀ z ∈ Response

 {

OBLIG′ = OBLIG – {(x, y, z)}

}

DeleteAdminOblig(x, y, z)

 x ∈ U ⋀ y ∈ Pattern ⋀ z ∈ Response

{

Admin_OBLIG′ = Admin_OBLIG – {(x, y, z)}

}

C.5 Relation Formation Commands

Besides ensuring that the arguments supplied for the formal parameters of a command are valid,

the preconditions ensure that sufficient authority is held by the process attempting the access,

including the absence of any prohibitions.10 That is, reference mediation must be successfully

carried out as a prerequisite to executing the body of an administrative command. Note that

individual access rights beginning with the prefixes c- and d- are represented by constants in the

precondition formulas. That is, access rights are specified as text strings associated with the

preconditions of administrative commands.

CreateUserAttributeInPolicyClass(p, x, pc)

 p ∈ P ⋀ pc ∈ PC ⋀

 (c-ua, pc) ∈ APCap(p) ⋀ (c-uapc, pc) ∈ APCap(p) // holds basic authorization

 (p, c-ua, pc) ∈ NoDeny ⋀ (p, c-uapc, pc) ∈ NoDeny) // no prohibitions apply

{

CreateUA(x) // routine returns x; UA′ = UA ⋃ {x}

CreateAssign(x, pc) // ASSIGN′ = ASSIGN ⋃ {(x, pc)}

}

AssignUserAttributeToPolicyClass(p, ua, pc)

 p ∈ P ⋀ pc ∈ PC ⋀ ua ∈ UA

 (ua, pc) ∉ ASSIGN

 (((c-uapc, pc) ∈ APCap(p) ⋀ ua ASSIGN+ pc ⋀ (p, c-uapc, pc) ∈ NoDeny) ⋁
 ((c-uapc-from, ua), (c-uapc-to, pc) ∈ APCap(p) ⋀

 (p, c-uapc-from, ua), (p, c-uapc-to, pc) ∈ NoDeny))

{

CreateAssign(ua, pc)

}

10 In modeling administrative commands, the process attempting access is represented as the first parameter of the command. It

could have been modeled instead by eliminating the parameter and using in its place a semantic function (e.g., getProcessID()) that

denotes the retrieval of the identifier of the process in question.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 91

CreateUserAttributeInUserAttribute(p, x, ua)

 p ∈ P ⋀ ua ∈ UA

 (c-ua, ua), (c-uaua, ua) ∈ APCap(p)
 (p, c-ua, ua), (p, c-uaua, ua) ∈ NoDeny

{

CreateUA(x)

CreateAssign(x, ua)

}

AssignUserAttributeToUserAttribute(p, uafrom, uato)

 p ∈ P ⋀ uafrom, uato ∈ UA

 (uafrom, uato) ∉ ASSIGN

 (((c-uaua, uato) ∈ APCap(p) ⋀ (p, c-uaua, uato) ∈ NoDeny ⋀

 ∃x ∈ PC: (uafrom ASSIGN+ x ⋀ uato ASSIGN+ x)) ⋁
 ((c-uaua-from, uafrom), (c-uaua-to, uato) ∈ APCap(p) ⋀

 (p, c-uaua-from, uafrom), (p, c-uaua-to, uato) ∈ NoDeny))

{

CreateAssign(uafrom, uato)

}

CreateUserInUserAttribute(p, x, ua)

 p ∈ P ⋀ ua ∈ UA

 (c-u, ua), (c-uua, ua) ∈ APCap(p)
 (p, c-u, ua), (p, c-uua, ua) ∈ NoDeny

{

CreateU(x)

CreateAssign(x, ua)

}

AssignUserToUserAttribute(p, u, ua)

 p ∈ P ⋀ u ∈ U ⋀ ua ∈ UA

 (u, ua) ∉ ASSIGN

 (((c-uua, ua) ∈ APCap(p) ⋀ ∃x ∈ PC: (u ASSIGN+ x ⋀ ua ASSIGN+ x)) ⋁
 (c-uua-from, u), (c-uua-to, ua) ∈ APCap(p))

 (p, c-uua-from, x), (p, c-uua-to, z) ∈ NoDeny

{

CreateAssign(u, ua)

}

Relation formation commands for object and object attribute assignments are defined similarly to

those given above for user and user attributes.

CreateAssociation(p, x, y, z)

 p ∈ P ⋀ x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ OA

 (x, y, z) ∉ ASSOC

 (c-assoc-from, x), (c-assoc-to, z) ∈ APCap(p) // holds basic authorization

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 92

 (p, c-assoc-from, x), (p, c-assoc-to, z) ∈ NoDeny // no prohibitions apply

 {

CreateAssoc(x, y, z)

}

CreateAdministrativeAssociation(p, x, y, z)

 p ∈ P ⋀ x ∈ UA ⋀ y ∈ AARs ⋀ z ∈ PE

 (x, y, z) ∉ Admin_ASSOC

 (c-admin-assoc-from, x), (c-admin-assoc-to, z) ∈ APCap(p)

 (p, c-admin-assoc-from, x), (p, c-admin-assoc-to, z) ∈ NoDeny

 {

CreateAdminAssoc(x, y, z)

}

CreateDisjunctiveUserProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ U ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 (w, x, y, z) ∉ U_deny_disjunctive

 (c-deny-from, w) ∈ APCap(p)

 (p, c-deny-from, w) ∈ NoDeny

 ∀oa ∈ OAs:((c-deny-to, oa) ∈ APCap(p) ⋀ (p, c-deny-to, oa) ∈ NoDeny)

 ∀oac ∈ OACs:((c-deny-to, oac) ∈ APCap(p) ⋀ (p, c-deny-to, oac) ∈ NoDeny)

 {

CreateU_deny_disjunctive(w, x, y, z)

}

CreateDisjunctiveProcessProhibition(p, w, x, y, z)

 p, w ∈ P ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 (w, x, y, z) ∉ P_deny_disjunctive

 (c-deny-from, w) ∈ APCap(p)

 (p, c-deny-from, w) ∈ NoDeny

 ∀oa ∈ OAs:((c-deny-to, oa) ∈ APCap(p) ⋀ (p, c-deny-to, oa) ∈ NoDeny)

 ∀oac ∈ OACs:((c-deny-to, oac) ∈ APCap(p) ⋀ (p, c-deny-to, oac) ∈ NoDeny)

 {

CreateP_deny_disjunctive(w, x, y, z)

}

CreateDisjunctiveUserAttributeProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ UA ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 (w, x, y, z) ∉ UA_deny_disjunctive

 (c-deny-from, w) ∈ APCap(p)

 (p, c-deny-from, w) ∈ NoDeny

 ∀oa ∈ OAs:((c-deny-to, oa) ∈ APCap(p) ⋀ (p, c-deny-to, oa) ∈ NoDeny)

 ∀oac ∈ OACs:((c-deny-to, oac) ∈ APCap(p) ⋀ (p, c-deny-to, oac) ∈ NoDeny)

 {

CreateUA_deny_disjunctive(w, x, y, z)

}

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 93

CreateAdministrativeDisjunctiveUserProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ U ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 (w, x, y, z) ∉ U_Admin_deny_disjunctive

 (c-admin-deny-from, w) ∈ APCap(p)

 (p, c-admin-deny-from, w) ∈ NoDeny

 ∀pe ∈ PEs:((c-admin-deny-to, pe) ∈ APCap(p) ⋀

 (p, c-admin-deny-to, pe) ∈ NoDeny)

 ∀pec ∈ PECs:((c-admin-deny-to, pec) ∈ APCap(p) ⋀

 (p, c-admin-deny-to, pec) ∈ NoDeny)

 {

CreateU_Admin_deny_disjunctive(w, x, y, z)

}

CreateAdministrativeDisjunctiveProcessProhibition(p, w, x, y, z)

 p, w ∈ P ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 (w, x, y, z) ∉ P_Admin_deny_disjunctive

 (c-admin-deny-from, w) ∈ APCap(p)

 (p, c-admin-deny-from, w) ∈ NoDeny

 ∀pe ∈ PEs:((c-admin-deny-to, pe) ∈ APCap(p) ⋀

 (p, c-admin-deny-to, pe) ∈ NoDeny)

 ∀pec ∈ PECs:((c-admin-deny-to, pec) ∈ APCap(p) ⋀

 (p, c-admin-deny-to, pec) ∈ NoDeny)

 {

CreateP_Admin_deny_disjunctive(w, x, y, z)

}

CreateAdministrativeDisjunctiveUserAttributeProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ UA ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 (w, x, y, z) ∉ UA_Admin_deny_disjunctive

 (c-admin-deny-from, w) ∈ APCap(p)

 (p, c-admin-deny-from, w) ∈ NoDeny

 ∀pe ∈ PEs:((c-admin-deny-to, pe) ∈ APCap(p) ⋀

 (p, c-admin-deny-to, pe) ∈ NoDeny)

 ∀pec ∈ PECs:((c-admin-deny-to, pec) ∈ APCap(p) ⋀

 (p, c-admin-deny-to, pec) ∈ NoDeny)

 {

CreateUA_Admin_deny_disjunctive(w, x, y, z)

}

The conjunctive forms of user, user attribute, and process-based prohibition formation are

defined similarly to their disjunctive counterparts above.

EvalPattern(process, eventpattern), returns Boolean

{

 /* A semantic function that evaluates the correctness of a logical expression that

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 94

 describes an event pattern involving the policy elements and relations of the PM

(provided as an input string). It also verifies whether the process holds sufficient

authority over each recognized policy element in the pattern. The syntax of the

logical expression and the details of the evaluation algorithm are not prescribed

by the PM, but ideally should be capable of expressing and checking first-order

predicate calculus formulas. */

 }

EvalResponse(process, response), returns Boolean

{

 /* A semantic function that evaluates of the correctness of the syntax of an obligation’s

response (provided as an input string). It also verifies whether the process holds

sufficient authority over each recognized policy element in the response. The syntax

of the response and its constituent administrative routine invocations and the details

of the evaluation algorithm are not prescribed by the PM. */

 }

Note Concerning Obligations:

Obligations have unique characteristics that distinguish them from other relations. The
logical expression of the event pattern cannot be fully evaluated at creation time, since
variables used in the expression may refer to the value of items in the event context or to
policy elements and relations that may not exist until match time. However, some syntax
checks can be made to filter out incorrect expressions and verify that a string supplied as
an event pattern is well-formed with respect to its respective grammar. In addition,
verification should be made that the creator of an obligation holds c-oblig access rights
over each recognized policy element reference in the pattern, or if the obligation is an
administrative obligation, holds c-admin-oblig access rights over any recognized referent
policy element in the pattern. A similar situation applies to the expression of the obligation
response and to the arguments and invocation of the administrative routines that make up
the response.

The creation of obligations is modeled with two administrative commands:
CreateObligation and CreateAdministrativeObligation. The preconditions for each require
that the event pattern supplied meets the formal grammar rules for the language used to
specify logical expressions (i.e., the EvalPattern function returns True). Similarly, the
preconditions for each also require that the response meets the formal grammar rules for
the language used to specify administrative routine invocations (i.e., the EvalResponse
function returns True). The semantics for these routines describe the preservation of the
partially checked event pattern and response statements, for later use in event context
matching and response initiation. The user for which the obligation is created is also
preserved to allow, at the time a match to the obligation occurs, verification that the user
has sufficient authorization to execute the response.

CreateObligation(x, y, z)

 /* The pattern of an obligation created with this command will be matched only when an

 event for a resource operation occurs. */

 x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response

 (process_user(x), y, z) ∉ OBLIG ⋀ EvalPattern(p, y) ⋀ EvalResponse(p, z)

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 95

 /* EvalPattern and EvalResponse verify that the process has sufficient authorization over

 terms in their respective components to create the obligation */

{

CreateOblig(process_user(x), y, z)

}

CreateAdministrativeObligation(x, y, z)

 /* The pattern of an administrative obligation created with this command will be matched

 only when an event for an administrative operation occurs. */

 x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response

 (process_user(x), y, z) ∉ Admin_OBLIG ⋀ EvalPattern(y) ⋀ EvalResponse(z)

 /* EvalPattern and EvalResponse verify that the process has sufficient authorization over

 terms in their respective components to create the obligation */

{

CreateAdminOblig(process_user(x), y, z)

}

C.6 Relation Rescindment Commands

Besides ensuring that the arguments supplied for the formal parameters of a command are valid,

the preconditions ensure that sufficient authority is held by the process attempting the access,

including the absence of prohibitions. As in the previous section, individual access rights

beginning with the prefixes c- and d- are represented by constants in the precondition formulas.

For commands that delete assignment between policy elements, the preconditions also ensure

that the contained policy element is not left isolated. Note that for rescindment of relations to

proceed correctly, the following rule must be observed: before attempting deletion of a policy

element along with an associated assignment, any outstanding associations or prohibitions must

first be deleted.

DeleteUserInUserAttribute(p, u, ua)

 /* check type of supplied variables, that an assignment exists, and that sufficient authority is

 held to delete both the assignment and the contained u */

 p ∈ P ⋀ u ∈ U ⋀ ua ∈ UA ⋀ (u, ua) ∈ ASSIGN // verify input variables

 (d-u, ua) ∈ APCap(p) ⋀ (p, d-u, ua) ∈ NoDeny // verify authority exists

 (((d-uua, ua) ∈ APCap(p) ⋀ (p, d-uua, ua) ∈ NoDeny)) ⋁
 ((d-uua-from, u), (d-uua-to, ua) ∈ APCap(p) ⋀

 (p, d-uua-from, u), (p, d-uua-to, ua) ∈ NoDeny))

{

DeleteAssign(u, ua)

DeleteU(u) // routine fails if any relations exist that involve u

}

DisassignUserToUserAttribute(p, u, ua)

 /* check the type of supplied variables, that an assignment exists between the uas, that

 sufficient authority is held to delete the assignment, and that PC reachability is maintained */

 p ∈ P ⋀ u ∈ U ⋀ ua ∈ UA

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 96

 (u, ua) ∈ ASSIGN
 ∃x ∈ UA: (x ≠ ua ⋀ u ASSIGN+ x) // ensures that u is assigned to some other PE

 (((d-uua, ua) ∈ APCap(p) ⋀ (p, d-uua, ua) ∈ NoDeny) ⋁
 ((d-uua-from, u), (d-uua-to, ua) ∈ APCap(p) ⋀

 (p, d-uua-from, u), (p, d-uua-to, ua) ∈ NoDeny))

{

DeleteAssign(u, ua)

}

DeleteUserAttributeInUserAttribute(p, uafrom, uato)

 /* check type of supplied variables, check that an assignment exists between the uas, and

 check that sufficient authority is held to delete both the assignment and the contained ua */

 p ∈ P ⋀ uafrom, uato ∈ UA

 (uafrom, uato) ∈ ASSIGN

 (d-ua, uato) ∈ APCap(p) ⋀ (p, d-ua, uato) ∈ NoDeny

 (((d-uaua, ua) ∈ APCap(p) ⋀ (p, d-uaua, uato) ∈ NoDeny) ⋁
 ((d-uaua-from, uafrom), (d-uaua-to, uato) ∈ APCap(p) ⋀

 (p, d-uaua-from, uafrom), (p, d-uaua-to, uato) ∈ NoDeny))

{

DeleteAssign(uafrom, uato)

DeleteUA(uafrom) // routine fails if any relations exist that involve uafrom

}

DisassignUserAttributeToUserAttribute(p, uafrom, uato)

 /* check the type of supplied variables, that an assignment exists between the uas, that

 sufficient authority is held to delete the assignment, and that PC reachability is maintained */

 p ∈ P ⋀ uafrom, uato ∈ UA

 (uafrom, uato) ∈ ASSIGN
 ∃x ∈ PE: (x ≠ uato ⋀ uafrom ASSIGN x) // ensures that uafrom is assigned to some other PE

 (((d-uaua, uato) ∈ APCap(p) ⋀ (p, d-uaua, uato) ∈ NoDeny) ⋁
 ((d-uaua-from, uafrom), (d-uaua-to, uato) ∈ APCap(p) ⋀

 (p, d-uaua-from, uafrom), (p, d-uaua-to, uato) ∈ NoDeny))

{

DeleteAssign(uafrom, uato)

}

DeleteUserAttributeInPolicyClass(p, ua, pc)

 /* check type of supplied variables, check that an assignment exists between the ua and pc,

 and that sufficient authority is held to delete both the assignment and the contained ua */

 p ∈ P ⋀ ua ∈ UA ⋀ pc ∈ PC

 (ua, pc) ∈ ASSIGN

 (d-ua, pc) ∈ APCap(p) ⋀ (p, d-ua, pc) ∈ NoDeny

 (((d-uapc, pc) ∈ APCap(p) ⋀ (p, d-uapc, pc) ∈ NoDeny) ⋁
 ((d-uapc-from, ua), (d-uapc-to, pc) ∈ APCap(p) ⋀

 (p, d-uapc-from, ua), (p, d-uapc-to, pc) ∈ NoDeny))

{

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 97

DeleteAssign(ua, pc)

DeleteUA(ua) // routine fails if any relations exist that involve ua

}

DisassignUserAttributeToPolicyClass(p, ua, pc)

 /* check the type of supplied variables, that an assignment exists, that sufficient authority is

 held to delete the assignment, and that PC-reachability is maintained*/

 p ∈ P ⋀ ua ∈ UA ⋀ pc ∈ PC

 (ua, pc) ∈ ASSIGN
 ∃x ∈ PC: (x ≠ pc ⋀ ua ASSIGN+ x) // ensures that the ua can reach some other PC

 (((d-uapc, pc) ∈ APCap(p) ⋀ (p, d-uapc, pc) ∈ NoDeny) ⋁
 ((d-uapc-from, ua), (d-uapc-to, pc) ∈ APCap(p) ⋀

 (p, d-uapc-from, ua), (p, d-uapc-to, pc) ∈ NoDeny))

{

DeleteAssign(ua, pc)

}

Relation recindment commands for object and object attribute assignments are defined similarly

to those given above for user and user attributes.

DeleteAssociation(p, x, y, z)

 p ∈ P ⋀ x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ OA

 (x, y, z) ∈ ASSOC

 (d-assoc-from, x), (d-assoc-to, z) ∈ APCap(p)

 (p, d-assoc-from, x), (p, d-assoc-to, z) ∈ NoDeny

 {

DeleteAssoc(x, y, z)

}

DeleteAdministrativeAssociation(p, x, y, z)

 p ∈ P ⋀ x ∈ UA ⋀ y ∈ AARs ⋀ z ∈ PE

 (x, y, z) ∈ Admin_ASSOC

 (d-admin-assoc-from, x), (d-admin-assoc-to, z) ∈ APCap(p)

 (p, d-admin-assoc-from, x), (p, d-admin-assoc-to, z) ∈ NoDeny

 {

DeleteAdminAssoc(x, y, z)

}

DeleteDisjunctiveUserProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ U ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 (w, x, y, z) ∈ U_deny_disjunctive

 (d-deny-from, w) ∈ APCap(p)

 (p, d-deny-from, w) ∈ NoDeny

 ∀oa ∈ OAs:((d-deny-to, oa) ∈ APCap(p) ⋀ (p, d-deny-to, oa) ∈ NoDeny)

 ∀oac ∈ OACs:((d-deny-to, oac) ∈ APCap(p) ⋀ (p, d-deny-to, oac) ∈ NoDeny)

 {

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 98

DeleteU_deny_disjunctive(w, x, y, z)

}

DeleteDisjunctiveProcessProhibition(p, w, x, y, z)

 p, w ∈ P ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 (w, x, y, z) ∈ P_deny_disjunctive

 (d-deny-from, w) ∈ APCap(p)

 (p, d-deny-from, w) ∈ NoDeny

 ∀oa ∈ OAs:((d-deny-to, oa) ∈ APCap(p) ⋀ (p, d-deny-to, oa) ∈ NoDeny)

 ∀oac ∈ OACs:((d-deny-to, oac) ∈ APCap(p) ⋀ (p, d-deny-to, oac) ∈ NoDeny)

 {

DeleteP_deny_disjunctive(w, x, y, z)

}

DeleteDisjunctiveUserAttributeProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ UA ⋀ x ∈ ARs ⋀ y ∈ OAs ⋀ z ∈ OACs

 (w, x, y, z) ∈ UA_deny_disjunctive

 (d-deny-from, w) ∈ APCap(p)

 (p, d-deny-from, w) ∈ NoDeny

 ∀oa ∈ OAs:((d-deny-to, oa) ∈ APCap(p) ⋀ (p, d-deny-to, oa) ∈ NoDeny)

 ∀oac ∈ OACs:((d-deny-to, oac) ∈ APCap(p) ⋀ (p, d-deny-to, oac) ∈ NoDeny)

 {

DeleteUA_deny_disjunctive(w, x, y, z)

}

DeleteAdministrativeDisjunctiveUserProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ U ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 (w, x, y, z) ∈ U_Admin_deny_disjunctive

 (d-admin-deny-from, w) ∈ APCap(p)

 (p, d-admin-deny-from, w) ∈ NoDeny

 ∀pe ∈ PEs:((d-admin-deny-to, pe) ∈ APCap(p) ⋀ (p, d-admin-deny-to, pe) ∈ NoDeny)

 ∀pec ∈ PECs:((d-admin-deny-to, pec) ∈ APCap(p) ⋀ (p, d-admin-deny-to, pec) ∈ NoDeny)

 {

DeleteU_Admin_deny_disjunctive(w, x, y, z)

}

DeleteAdministrativeDisjunctiveProcessProhibition(p, w, x, y, z)

 p, w ∈ P ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 (w, x, y, z) ∈ P_Admin_deny_disjunctive

 (d-admin-deny-from, w) ∈ APCap(p)

 (p, d-admin-deny-from, w) ∈ NoDeny

 ∀pe ∈ PEs:((d-admin-deny-to, pe) ∈ APCap(p) ⋀ (p, d-admin-deny-to, pe) ∈ NoDeny)

 ∀pec ∈ PECs:((d-admin-deny-to, pec) ∈ APCap(p) ⋀ (p, d-admin-deny-to, pec) ∈ NoDeny)

 {

DeleteP_Admin_deny_disjunctive(w, x, y, z)

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 99

}

DeleteAdministrativeDisjunctiveUserAttributeProhibition(p, w, x, y, z)

 p ∈ P ⋀ w ∈ UA ⋀ x ∈ AARs ⋀ y ∈ PEs ⋀ z ∈ PECs

 (w, x, y, z) ∈ UA_Admin_deny_disjunctive

 (d-admin-deny-from, w) ∈ APCap(p)

 (p, d-admin-deny-from, w) ∈ NoDeny

 ∀pe ∈ PEs:((d-admin-deny-to, pe) ∈ APCap(p) ⋀ (p, d-admin-deny-to, pe) ∈ NoDeny)

 ∀pec ∈ PECs:((d-admin-deny-to, pec) ∈ APCap(p) ⋀ (p, d-admin-deny-to, pec) ∈ NoDeny)

 {

DeleteUA_Admin_deny_disjunctive(w, x, y, z)

}

The conjunctive forms of user, user attribute, and process-based prohibition rescindment are

defined similarly to their disjunctive counterparts above.

DeleteObligation(x, y, z)

 x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response

 (process_user(x), y, z) ∈ OBLIG

 // ensure that the process has authorization to delete the obligation

 ∃pe ∈ PEs:((d-deny, pe) ∈ PCap(p) ⋀ (p, d-deny, pe) ∈ NoDeny)

{

DeleteOblig(process_user(x), y, z)

}

DeleteAdministrativeObligation(x, y, z)

 x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response

 (process_user(x), y, z) ∈ Admin_OBLIG

 // ensure that the process has authorization to delete the obligation

 ∃pe ∈ PEs:((d-admin-deny, pe) ∈ PCap(p) ⋀ (p, d-admin-deny, pe) ∈ NoDeny)

{

CreateAdminOblig(process_user(x), y, z)

}

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 100

Appendix D—Defining Personas

The idea behind personas is that in many circumstances, it is desirable to have certain individuals

act in two different, mutually exclusive modes of operation: that of an administrator and that of a

user. However, assigning an individual two distinct user identities, one for each mode of

operation, takes an important aspect of policy management outside of the policy specification,

which eventually could lead to problems as policy evolves and personnel changes occur. It

would be preferable to accommodate this type of functionality explicitly within the policy

specification. Three general approaches are possible: extending the PM model, defining and

triggering obligations, and applying a role-based orientation.

D.1 Via Model Extension

The first approach is to incorporate the functionality of personas into the PM model. This can be

done by defining an extension to the model, which would allow a user with sufficient

authorization to change its assignment to a user attribute representing one mode of operation, to a

different user attribute that represents the other mode of operation. The extension described here

provides a straightforward example of this approach. It entails defining a new access right,

reassign-user, for the administrative action, together with an administrative command that carries

out the indicated action. To grant the requisite authority, the system administrator has only to

establish administrative associations that allow the user in question to switch between each user

attribute that serves as one of its personas. With that authority in place, the user can initiate the

administrative command via an administrative access request to cause its assignment to change.

The administrative command below, SwitchAssignmentBetweenUAs, specifies the creation of

an assignment from the user u to the new user attribute uanew and the deletion of the assignment

from the user u to the current user attribute uacurrent. The syntax and notation for the command

follows that described in Appendix C.

SwitchAssignmentBetweenUAs (p, u, uacurrent, uanew)

 p ∈ P ⋀ u ∈ U ⋀ uacurrent, uanew ∈ UA

 // u is assigned only to uacurrent and the process is requesting access for u

 (u, uacurrent) ∈ ASSIGN ⋀ (u, uanew) ∉ ASSIGN ⋀ u = process_user(p)

 // u must hold reassign-user authorization over uacurrent and uanew

 (reassign-user, uacurrent), (reassign-user, uanew) ∈ APCap(p)

{

CreateAssign(u, uanew)

DeleteAssign (u, uacurrent)

}

The solution is general purpose. Persona attributes are not restricted to switching a user between

non-administrative and administrative modes of operation, although that is a common use. They

can also apply to switching a user solely between either administrative modes or non-

administrative modes of operation. Moreover, the approach works with not only two user

persona attributes, each representing an alternative mode of operation for the user, but also any

number of such attributes.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 101

A simple example based on Figure 5 illustrates usage of the extension more concretely. For that

policy, u2 and u4 are presumed to represent two personas for a single individual. Applying the

above solution eliminates the need for u4 to be defined, since the single user u2 will suffice. The

following steps are required to define the policy:

 Create the association (OUadmin, {reassign-user}, Group2) ∈ Admin_ASSOC, which

grants users assigned to OUadmin the authorization to change that assignment to Group2.

 Create the association (OUadmin, {reassign-user}, OUadmin) ∈ Admin_ASSOC, which

grants users assigned to OUadmin the authorization to change that assignment away from

OUadmin.

 Create the association (Group2, {reassign-user}, OUadmin) ∈ Admin_ASSOC, which

grants users assigned to Group2 the authority to change that assignment to OUadmin.

 Create the association (Group2, {reassign-user}, Group2) ∈ Admin_ASSOC, which

grants users assigned to Group2 the authorization to change that assignment away from

Group2.

 Delete the user policy element u4 and its assignment to OUadmin, since they are no

longer needed.

An individual logging in as u2 for the first time defaults to the persona attribute for which u2 is

assigned (i.e., Group2). The user can switch via its process to the other persona attribute by

issuing the administrative access request <switch-assignment, [Group2, OUadmin]>p, which in

turn results in the execution of the administrative command SwitchAssignmentBetweenUAs(p,

u2, Group2, OUadmin) to carry out the action. The individual can switch back to the Group2

persona attribute by issuing a similar access request with the order of the arguments reversed.

Note that if multiple users are expected to be assigned to a user attribute designated as a persona,

but not all of them require the ability to switch among personas, a slight adjustment can be made

to the authorization graph to accommodate the situation. Adding a container, such as persona-

ua, and assigning it to the user attribute ua allows the container to be substituted in lieu of ua as

the basis for reassign-user associations and persona reassignment requests for the user in

question and any other users that operate via the same set of personas. In the Figure 5 example,

for instance, if users that do not perform administrative functions are expected to be assigned to

Group2, a new user attribute persona-Group2 can be created and assigned to the Group2 user

attribute, and the two administrative associations can be redefined with persona-Group2 used in

place of Group2.

D.2 Via Obligations

The second way to accommodate personas is through obligations. This approach would involve

defining a command very similar to SwitchAssignmentBetweenUAs, but with different

preconditions appropriate for use in an obligation. It would also require assigning the

appropriate authorization to a user to enable the triggering of the obligation and execution of the

command. In this case, however, no new authorizations like reassign-user would apply; instead,

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 102

an existing core access right would apply, such as reading from or writing to some file created

for this purpose. Exercising the assigned authority to perform input or output to a file would

correspond to a specific switch in user assignments.

Using the Figure 5 policy as an example again, files called switch-to-OUadmin and switch-to-

Group2 could be defined and assigned to the Projects container. An obligation could be defined

such that a user in Group2 reading the switch-to-OUadmin file would trigger an obligation that

causes the user to be resigned to OUadmin. Likewise, another obligation could be defined such

that a user in OUadmin reading the switch-to-Group2 file would trigger an obligation that causes

the user to be reassigned to Group2.

With this approach, issuing an access request to read one of the designated files has a similar

effect to issuing an administrative access requested to switch assignments in the other—they

both cause the administrative command to be executed to carry out the change in assignments.

As with the earlier approach, if it is intended to assign multiple users to a user attribute

designated as a persona, but only some of them require the ability to switch among personas, the

same adjustment to the authorization graph can be applied to accommodate the situation when

obligations are used.

While personas can be instituted employing obligations, the approach is less direct and more

cumbersome than incorporating personas via an extension the model. For example, two or more

persona attributes can be supported for a user or class or users, but each persona attribute would

require the definition of an obligation and a special-purpose file to trigger its respective

obligation. Nevertheless, for policies where only a single class of administrator is needed,

obligations may provide a useful means to support personas.

D.3 Via a Role-based Orientation

The third approach for incorporating the functionality of personas is to treat each persona as

though it were a role. This is by far the best approach, since it can be done entirely through the

policy specification, requiring no extensions to the model as in the first approach (viz., new

administrative commands) or triggering of obligations through special-purpose files, as in the

second. To begin, a slight change is needed to the initial policy represented in Figure 5. The

user u4 would be eliminated, user u2 would be assigned to a new attribute, persona-u2, instead of

Group2, and persona-u2 would be assigned to Administrators. The following steps can then be

used to define the base policy:

 Create the administrative association (persona-u2, {c-uaua-from, d-uaua-from}, persona-

u2) ∈ Admin_ASSOC, which grants u2 the authorization to create or delete an assignment

from persona-u2 to another user attribute for which it holds uaua-to assignment authority.

 Create the administrative association (persona-u2, {c-uaua-to, d-uaua-to}, OUadmin) ∈

Admin_ASSOC, which grants u2 the authorization to to create or delete an assignment to

OUadmin from another user attribute (viz., persona-u2) for which it respectively holds c-

uaua-from or d-uaua-from assignment authority.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7987

 103

 Create the administrative association (persona-u2, {c-uaua-to, d-uaua-to}, Group2) ∈

Admin_ASSOC, which grants u2 the authorization to to create or delete an assignment to

Group2 from another user attribute (viz., persona-u2) for which it respectively holds c-

uaua-from or d-uaua-from assignment authority.

The above policy allows a process operating on behalf of u2 to create and delete assignments that

allow it to operate with OUadmin authorizations, Group2 authorizations, and both OUadmin and

Group2 authorizations. To avoid the latter from occurring and have all u2 processes operation

under one or the other authorizations, the following dynamic separation of duty obligations must

be defined.

When AEC.aop = create-assign-UAtoUA ⋀ AEC.u ASSIGN+ persona-u2 ⋀

AEC.argseq.2 = Group2 do

CreateAdminDisjunctiveU-Prohibition (AEC.p, {assign-to}, {UAadmin}, ∅)11

When AEC.aop = create-assign-UAtoUA ⋀ AEC.u ASSIGN+ persona-u2 ⋀

AEC.argseq.2 = OUadmin do

CreateAdminDisjunctiveU-Prohibition (AEC.p, {assign-to}, {Group2}, ∅)

When AEC.aop = delete-assign-UAtoUA ⋀ AEC.u ASSIGN+ persona-u2 ⋀

AEC.argseq.2 = Group2 do

DeleteAdminDisjunctiveU-Prohibition (AEC.p, {assign-to}, {UAadmin}, ∅)12

When AEC.aop = delete-assign-UAtoUA ⋀ AEC.u ASSIGN+ persona-u2 ⋀

AEC.argseq.2 = OUadmin do

DeleteAdminDisjunctiveU-Prohibition (AEC.p, {assign-to}, {Group2}, ∅)

11 The semantics of the administrative command used in this obligation is essentially the same as that for the command

CreateAdministrativeDisjunctiveUserProhibition given in Appendix C, with one exception—the preconditions for this command

asserts that the user who defined the obligation must hold sufficient authorization to execute the body of the command.

12 The DeleteAdministrativeDisjunctiveUserProhibition command given in Appendix C has essentially the same semantics as this

administrative command, with the caveat of differences in preconditions.

	1. Introduction
	1.1 Purpose and Scope
	1.2 Standards Alignment
	1.3 Document Structure

	2. Background
	2.1 Access Control Models
	2.2 Discretionary Access Control
	2.3 Mandatory Access Control
	2.4 Chinese Wall
	2.5 Role Based Access Control

	3. Policy Machine Framework
	3.1 Core Policy Elements
	3.2 Assignments and Relations between Elements
	3.2.1 User, Object, and Attribute Relationships
	3.2.2 Relationships among Attributes
	3.2.3 Policy Class Relationships

	3.3 Associations and Privileges
	3.3.1 Associations
	3.3.2 Inheritance and Attribute Properties
	3.3.3 Derived Privileges

	3.4 Prohibitions
	3.5 Obligations

	4. Administrative Considerations
	4.1 Administrative Associations and Privileges
	4.2 Administrative Access Requests and Reference Mediation
	4.3 Administrative Prohibitions and Obligations
	4.4 Administrative Commands and Routines
	4.4.1 Administrative Routines
	4.4.2 Administrative Commands
	4.4.3 Administrative Actions

	5. Policy Specification
	5.1 Model Aspects and Use
	5.1.1 Electronic Mail
	5.1.2 Operating System

	5.2 Levels of Policy and Administration
	5.2.1 Intra-Policy Class Patterns
	5.2.2 Inter-Policy Class Patterns
	5.2.3 Personas and Patterns

	5.3 Authority Level Examples
	5.3.1 Electronic Mail
	5.3.2 Operating System

	5.4 Generic Access Rights

	6. Multiple Policy Class Considerations
	6.1 Association Refinements
	6.2 Prohibition Refinements
	6.3 Obligation Refinements
	6.4 Amalgamated Policy Examples
	6.4.1 DAC and Email
	6.4.2 DAC and MAC

	7. Architecture
	7.1 Architectural Components
	7.2 Client Applications
	7.3 Security Considerations

	8. References
	Appendix A— Acronyms
	Appendix B— Notation
	Appendix C— Semantics of Administrative Routines and Commands
	C.1 Element Creation Routines
	C.2 Element Deletion Routines
	C.3 Relation Formation Routines
	C.4 Relation Rescindment Routines
	C.5 Relation Formation Commands
	C.6 Relation Rescindment Commands

	Appendix D— Defining Personas
	D.1 Via Model Extension
	D.2 Via Obligations
	D.3 Via a Role-based Orientation

